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BN learning with IP

(Vanilla) BN learning using integer programming

I Have observations of random variables V in some dataset.

I Want to learn an ‘optimal’ Bayesian Network for some decomposable
score.

I Can encode any graph by creating a binary IP variable I (u ←W ) for
each BN variable u ∈ V and each candidate parent set W .
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(Vanilla) BN learning using integer programming

I Have observations of random variables V in some dataset.

I Want to learn an ‘optimal’ Bayesian Network for some decomposable
score.

I Can encode any graph by creating a binary IP variable I (u ←W ) for
each BN variable u ∈ V and each candidate parent set W .
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1
I I (0← ∅) = 1

I I (1← {0}) = 1

I I (2← {0, 1}) = 1

I All other IP variables zero.
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BN learning with IP

(Vanilla) BN learning using integer programming

I Have observations of random variables V in some dataset.

I Want to learn an ‘optimal’ Bayesian Network for some decomposable
score.

I Can encode any graph by creating a binary IP variable I (u ←W ) for
each BN variable u ∈ V and each candidate parent set W .

I Since the score is decomposable, each I (u ←W ) has an (assumed
precomputed) local score c(u,W ).

Instantiate the I (u ←W ) to maximise:∑
u,W c(u,W )I (u ←W )

subject to linear constraints ensuring that the I (u ←W ) represent a DAG.
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BN learning with IP

Solving the linear relaxation of an IP

I x = 4, y = 2 is the optimal integer solution.

I x = 2.5, y = 2.8 is the solution to the linear relaxation.

I Linear relaxation can be solved quickly, and provides an upper bound.
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BN learning with IP

Ruling out non-DAGs with linear constraints

∀u ∈ V :
∑
W

I (u ←W ) = 1

Where C ⊆ V :
∑
u∈C

∑
W :W∩C=∅

I (u ←W ) ≥ 1 (1)

I Let x∗ be the solution to the linear relaxation (LP). We search for a
cluster C such that x∗ violates (1) and then add (1) to get a new LP.

I Repeat as long as a ‘cluster cut’ can be found.

I Cluster constraints introduced by Jaakkola, Sontag, Globerson and
Meila ( AISTATS2010 ) [Jaakkola et al., 2010].

James Cussens, University of York IP for BN learning Paris, 2014-04-10 4 / 31



Cutting planes

Separating the LP solution with a cutting plane
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BN learning

Learning very large pedigrees

I This is the structure of a real
pedigree relating 1614 individuals
from North West Greenland.

I Can find an optimal (maximum
likelihood) pedigree from data
simulated from this pedigree in
between 3 and 42 minutes.

I Much faster if you assume
non-founders have exactly 2 known
parents.
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BN learning

Solving in the root node

Eskimo pedigree. 1614 BN variables. At most 2 parents. Simulated
genotypes. 11934 IP variables.

time |frac|cuts | dualbound | primalbound | gap

1110s|120 | 661 | -3.162149e+04 |-4.616035e+04 | 45.98%

1139s|118 | 669 | -3.162175e+04 |-4.616035e+04 | 45.98%

1171s| 94 | 678 | -3.162213e+04 |-4.616035e+04 | 45.97%

1209s| 26 | 684 | -3.162220e+04 |-4.616035e+04 | 45.97%

1228s|103 | 685 | -3.162223e+04 |-4.616035e+04 | 45.97%

1264s| 0 | 692 | -3.162234e+04 |-4.616035e+04 | 45.97%

*1266s| 0 | - | -3.162234e+04 |-3.162234e+04 | 0.00%

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 1266.40
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BN learning

Solving after branching

Alarm. 37 BN variables. At most 3 parents. 10000 datapoints. 6473 IP
variables.

time | node | left |frac |strbr| gap

19.5s| 1 | 0 | 198 | 64 | 0.53%

20.1s| 1 | 2 | 198 | 79 | 0.53%

20.4s| 2 | 3 | 87 | 94 | 0.52%

20.5s| 3 | 2 | - | 94 | 0.52%

21.2s| 4 | 3 | 18 | 172 | 0.52%

R21.3s| 5 | 2 | 90 | 172 | 0.51%

.... .....

63.3s| 1726 | 1 | - |1261 | 0.04%

63.3s| 1727 | 0 | - |1261 | 0.00%

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 63.34
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BN learning

Adding constraints

I Adding in structural constraints is facilitated by the constrained
optimisation approach.

I Banning/insisting on certain edges, ruling out particular immoralities,
or all immoralities (all these linear).

I We use linear constraints to rule out specific BNs, allowing k-best
learning

I Also allow conditional independence constraints . . .

I . . . This will be efficiently done in the next release!
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Closecuts

Cutting plane approach

I Generate a point outside the convex hull.

I Separate the point: find a valid inequality it violates.

I Usually this point is the solution to the current linear relaxation.

I But is this the best point to separate?
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Closecuts

Separating the LP solution with a cutting plane

James Cussens, University of York IP for BN learning Paris, 2014-04-10 11 / 31



Closecuts

Separating the LP solution with a cutting plane
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Closecuts

Generating a ‘close’ point to separate
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Closecuts

Generating a ‘close’ point to separate
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Exact estimation of multiple directed acyclic graphs

Exact estimation of multiple directed acyclic graphs

I Learn BNs G (k) for multiple related but non-identical units or
‘individuals’ k ∈ {1, 2, . . . ,K}.

I Improve robustness, reduce small sample bias.

I Exchangeable learning: Penalise structural difference of the BNs for
any pair of individuals.

I Non-exchangeable learning: Penalise structural difference of the BNs
only for related individuals. And learn which are related.

I Have used simulated and fMRI data.
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Exact estimation of multiple directed acyclic graphs

Learning scenario

G (1) G (2) G (3) G (K)G (K−1)

Y(1) Y(2) Y(3)

. . .

Y(K−1) Y(K)

θ(1) θ(2) θ(3) θ(K)θ(K−1)

. . .

Population structure N

DAGs

Observables

Parameters

Figure : Multiple directed, acyclic graphical models (DAGs) with population
structure encoded by an undirected network N. [Shaded nodes are unobserved.

G (1:K) = data-generating graphs, θ(1:K) = data-generating parameters, Y(1:K) =
observation vectors.]

From [Oates et al., 2014]
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Exact estimation of multiple directed acyclic graphs

Exchangeable learning

To decide whether individuals k, l agree on a specific edge (j , i), we
introduce additional variables:

d (k,l)(j , i) = I{j ∈ G
(k)
i ∆G

(l)
i } ∀i , j , k , l with k < l
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Exact estimation of multiple directed acyclic graphs

Nonlinear to linear

+d (k,l)(j , i) −e(k)(j , i) −e(l)(j , i) ≤ 0

−d (k,l)(j , i) +e(k)(j , i) −e(l)(j , i) ≤ 0

−d (k,l)(j , i) −e(k)(j , i) +e(l)(j , i) ≤ 0

+d (k,l)(j , i) +e(k)(j , i) +e(l)(j , i) ≤ 2

I SCIP does this linearisation for us.
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Exact estimation of multiple directed acyclic graphs

Exchangeable learning

The MAP estimate Ĝ (1:K) is the solution of the integer linear program

Ĝ (1:K) = arg max
G (1:K)∈GK

K∑
k=1

P∑
i=1

∑
π⊆{1:P}\{i}

s(k)(i , π)Π(k)(i , π)

−λ
∑

(k,l)∈N

P∑
i=1

P∑
j=1

d (k,l)(j , i)

subject to certain constraints
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Exact estimation of multiple directed acyclic graphs

Exchangeable learning

Subject 1 Subject 2 Subject 3

λ
=

0
λ
=

0.
1

λ
=

0.
2

λ
=

0.
3
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Exact estimation of multiple directed acyclic graphs

Non-exchangeable learning

D(k,l)(j , i) = I{j ∈ G
(k)
i ∆G

(l)
i and (k, l) ∈ N} ∀i , j , k, l .
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Exact estimation of multiple directed acyclic graphs

Non-linear to linear

+D(k,l)(j , i) −E (k,l) ≤ 0

+D(k,l)(j , i) −d (k,l)(j , i) ≤ 0

−D(k,l)(j , i) +E (k,l) +d (k,l)(j , i) ≤ 1.

I SCIP does this linearisation for us.
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Exact estimation of multiple directed acyclic graphs

Non-exchangeable learning

The MAP estimate (Ĝ (1:K), N̂) is the solution of the integer linear program

(Ĝ (1:K), N̂) := arg max
G (1:K)∈GK ,N∈N

K∑
k=1

P∑
i=1

∑
π⊆{1:P}

s(k)(i , π)Π(k)(i , π)

−λ
P∑
i=1

P∑
j=1

K∑
k=1

K∑
l=k+1

D(k,l)(j , i) + η

K∑
k=1

K∑
l=k+1

E (k,l)

subject to certain constraints
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Exact estimation of multiple directed acyclic graphs

Non-exchangeable learning
Density
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Finding facets

Facets: Not all cuts are equal
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Finding facets

Finding facets

I Cluster constraints [Jaakkola et al., 2010] are facets of the convex
hull of DAGs (unpublished proof)

I k-cluster constraints [Cussens, 2011] are also facets (unpublished
proof).

I How to find more?
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Finding facets

Generalising from small examples

I In our (full-dimensional) representation each of the 543 4-node DAGs
is a point in R28, since 28 = 4× (23 − 1).

I Matti Järvisalo used Fukuda’s cdd to find (in 1 second!) all 135
facets of the convex hull of these 543 points.

I These include
I lower bounds on variables,
I (modified) convexity constraints
I (k)-cluster inequalities

I And many inequalities (i.e. constraints) we did not know about . . .
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Finding facets

Facets not always easy to interpret

6 facets like this:

I (a← c)+ I (a← d)+ I (a← b, c)+ I (a← b, d)+ I (a← c , d)+2I (a← b, c , d)

+ I (b ← c)+ I (b ← d)+ I (b ← a, c)+ I (b ← a, d)+ I (b ← c , d)+2I (b ← a, c , d)

+ I (c ← a) + I (c ← b) + I (c ← d) + 2I (c ← a, b) + I (c ← a, d) + I (c ← b, d)

+ 2I (c ← a, b, d)

+ I (d ← a) + I (d ← b) + I (d ← c) + 2I (d ← a, b) + I (d ← a, c) + I (d ← b, c)

+ 2I (d ← a, b, c) ≤ 4

James Cussens, University of York IP for BN learning Paris, 2014-04-10 26 / 31



Finding facets

Lifting facets - an example

This facet for the convex hull of 3-node DAGs

I (a← b, c) + I (b ← a, c) + I (c ← a, b) ≤ 1

can be ‘lifted’ to this facet for 4-node DAGs:

I (a← b, c) + I (a← b, c , d) + I (b ← a, c) + I (b ← a, c , d)

+ I (c ← a, b) + I (c ← a, b, d) ≤ 1

I It is possible to lift facets of any type in this way (unpublished proof).

I So the 4-node DAG facets provide facets for any BN learning problem
(with more than 4 nodes).
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Finding facets

Not all facets are equal

I (a← b, c) + I (a← b, c , d) + I (b ← a, c) + I (b ← a, c , d)

+ I (c ← a, b) + I (c ← a, b, d) ≤ 1

I This facet is score-equivalent . . .

I . . . if two BNs are Markov equivalent then the LHS of the facet is the
same for both BNs.

I 66 4-node facets are not score-equivalent.

I Score-equivalent facets are better since only they can help form the
optimal face.
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Finding facets

Facet finding in practice

I Latest version of GOBNILP, searches for (lifted) 4-node facets which
separate a given LP solution.

I Some facets added into problem at the beginning.

I It does indeed help sometimes dramatically!

I And yes, the score-equivalent facets help more.
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Future work

Column generation (what we’re doing wrong)

I Just as one can create constraints on the fly (cutting planes) one can
also create variables dynamically (column generation).

I Think of the not-currently-created variables as being initially fixed to
zero.

I After solving the LP search for a parent set with a positive reduced
local score. If we can’t find one we have all the variables we need for
an optimal solution.

I For the reduced local score we need (i) the (unreduced) local score
(ii) dual values for all the linear constraints in which it will appear and
(iii) its coefficient in each of these linear constraints.

I A lot of work but some hope of scaling up for more general-purpose
BN structure learning.
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