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IntroductionIntroduction

Classification (Supervised Learning)Classification (Supervised Learning)

“In classification, there is a target categorical target categorical 
variable  which is partitioned into variable  which is partitioned into variable, which is partitioned into variable, which is partitioned into 
predetermined classes or categoriespredetermined classes or categories. The data 
mining model examine a large set of records, g g ,
each record containing information on the 
target variable as well as a set of input or 
predictor variables”. (Larose, 2005).
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IntroductionIntroduction

Construction of Decision TreeConstruction of Decision Tree

 Classification variables
 Class/Target variable Y
 Attributes set {A1,A2,…,An}

h i i b l i ib i i h The tree partitions Y by selecting attributes Ai, aiming that 
each leaf will contain a single class of Y

 Performance measurese o a ce easu es
 Minimizing the classification error-rates
 Minimizing the average depth of the tree
 Minimizing the number of nodes/leaves
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IntroductionIntroduction
Example: IDExample: ID3 3 ((Lee &Lee & Olafsson, Olafsson, 20062006))

# A1 A2 A3 A4 Y

1 1 1 1 1 X

2 1 1 1 2 O A1
3 1 1 2 1 O

4 1 1 2 2 X

5 1 1 3 2 X

6 1 2 1 1 O

A1

O

A1=3 A1=2 A1=1

A3A2
A =2A =1 A 17 1 2 1 2 O

8 1 2 3 2 X

9 2 1 1 1 O

10 2 1 1 2 O

11 2 1 2 1 O

A3 X

A2=2A2=1

A2 X

A3=1 A3=2A3=3

A4
A3=3 A3=2A3=1 A4=2A2=1 A4=1A2=2

11 2 1 2 1 O

12 2 2 1 1 O

13 2 2 1 2 O

14 2 2 2 1 O

15 2 2 2 2 O

A4 X A4

X O
A4=2

O X
A4=1 A4=2

O XO A4

X O
A4=1 A4=2A4=1

16 3 1 1 2 X

17 3 1 2 1 X

18 3 1 2 2 O

19 3 1 3 1 X

• 4 categorical attributes A A

ID3 Decision Tree example

20 3 1 3 2 X

21 3 2 2 1 X

22 3 2 2 2 X

23 3 2 3 1 X

24 3 1 1 1 O

• 4 categorical attributes A1,….,A4
• Each selection splits the set into  

two or more partitions
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24 3 1 1 1 O

25 3 2 3 2 X



IntroductionIntroduction
Partition by YPartition by Y# A1 A2 A3 A4 Y

1 1 1 1 1 X

2 1 1 1 2 O

3 1 1 2 1 O

4 1 1 2 2 X

5 1 1 3 2 X

6 1 2 1 1 O

7 1 2 1 2 O 25},,21,22,23,6,17,19,20{1,4,5,8,17 1 2 1 2 O

8 1 2 3 2 X

9 2 1 1 1 O

10 2 1 1 2 O

11 2 1 2 1 O

8,24}13,14,15,1,10,11,12,{2,3,6,7,9
},, , , ,, , ,{ , , , ,

αY 

12 2 2 1 1 O

13 2 2 1 2 O

14 2 2 2 1 O

15 2 2 2 2 O

16 3 1 1 2 X

17 3 1 2 1 X

18 3 1 2 2 O

19 3 1 3 1 X

20 3 1 3 2 X20 3 1 3 2 X

21 3 2 2 1 X

22 3 2 2 2 X

23 3 2 3 1 X

24 3 1 1 1 O
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25 3 2 3 2 X



IntroductionIntroduction
Partition byPartition by

# A1 A2 A3 A4 Y

1 1 1 1 1 X

2 1 1 1 2 O

1A

3 1 1 2 1 O

4 1 1 2 2 X

5 1 1 3 2 X

6 1 2 1 1 O

7 1 2 1 2 O

8 1 2 3 2 X

9 2 1 1 1 O

10 2 1 1 2 O

11 2 1 2 1 O }2,23,24,2519,20,21,2{16,17,18,
},2,13,14,15{9,10,11,1

,6,7,8},{1,2,3,4,5
α1 

11 2 1 2 1 O

12 2 2 1 1 O

13 2 2 1 2 O

14 2 2 2 1 O

15 2 2 2 2 O

}, , ,, , ,{ , , ,

16 3 1 1 2 X

17 3 1 2 1 X

18 3 1 2 2 O

19 3 1 3 1 X

20 3 1 3 2 X

21 3 2 2 1 X

22 3 2 2 2 X

23 3 2 3 1 X

24 3 1 1 1 O
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24 3 1 1 1 O

25 3 2 3 2 X



IntroductionIntroduction
Partition by    Partition by    

# A1 A2 A3 A4 Y

1 1 1 1 1 X

2 1 1 1 2 O

21 AA 

3 1 1 2 1 O

4 1 1 2 2 X

5 1 1 3 2 X

6 1 2 1 1 O

{6 7 8}}{1 2 3 4 57 1 2 1 2 O

8 1 2 3 2 X

9 2 1 1 1 O

10 2 1 1 2 O

11 2 1 2 1 O

25}{21,22,23,19,20,24},{16,17,18,
15},{12,13,14,{9,10,11},

{6,7,8},},{1,2,3,4,5
α12 

11 2 1 2 1 O

12 2 2 1 1 O

13 2 2 1 2 O

14 2 2 2 1 O

15 2 2 2 2 O

16 3 1 1 2 X

17 3 1 2 1 X

18 3 1 2 2 O

19 3 1 3 1 X

20 3 1 3 2 X

21 3 2 2 1 X

22 3 2 2 2 X

23 3 2 3 1 X

24 3 1 1 1 O
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24 3 1 1 1 O

25 3 2 3 2 X



IntroductionIntroduction

Types of Decision Tree AlgorithmsTypes of Decision Tree Algorithms

Optimal Decision Trees 
 C id  ll ibl  lit  ( ll bi ti ) Consider all possible splits (all combinations)
 Construction is NP-hard (Hackock et al., 1996)

H i ti  THeuristic Trees
 Greedy trees (ID3, C4.5, CART)

• At each step consider only the next split 
 Look-ahead trees

• consider up-coming splits (usually 2-steps ahead)
• Computationally “pricy”: O(mnK) for n variables; m 

records  and a K steps look ahead procedure

-10-

records, and a K-steps look-ahead procedure



IntroductionIntroduction

Types of Decision Tree AlgorithmsTypes of Decision Tree Algorithms

H i ti  THeuristic Trees

Can we do better than greedy selection withoutCan we do better than greedy selection  without 
extensive computations?

M b b i th D l I f tiMaybe: e.g. by using the Dual Information 
Distance (DID) approach on a ‘partitions graph’
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IntroductionIntroduction

IDID33 ((Quinlan,Quinlan, 19861986) & ) & CC44..55 ((Quinlan,Quinlan, 19931993) ) 

 Recursively split each node until no splits are possible
 ID3 Splitting Criteria: (highest) Information Gain ID3 Splitting Criteria: (highest) Information Gain

)A|H(YH(Y))AGain(Y; nInformatio ii 

 C4.5 Splitting Criteria: (highest) Gain Ratio

)Enropy(A
)A(Y;GainnInformatio)ARatio(Y; Gain

i

i
i 

 Max information gain/Reduction of entropy (uncertainty)!
 Very popular & produces good results in practice problems 

(Goodman & Smyth  1988; Murthy & Salzberg  1995) 
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(Goodman & Smyth, 1988; Murthy & Salzberg, 1995) 
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Information TheoryInformation Theory

Chain Rule of Mutual Information (Shannon, Chain Rule of Mutual Information (Shannon, 4848))

:A,A ,attributes For two 21

)(()()(
)()()(

121121

12121

,Y|AAH|Y)AH|AAHAH
;Y|AAI;YAI;Y,AAI




 AY|AAIYAAAI )()(
:GeneralIn 







i ,i-ii ,i-i

i ,i-in

,Y...,A|AAH...,A|AAH

...,A;Y|AAI;Y,...,A,AAI

 1111

1121

)()(

)()(

    

(DM)y uncertaint  Remaining
 Entropy  / Minimize(DOE)ity OrthogonalMax 
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Information TheoryInformation Theory

Chain Rule of Mutual Information (Shannon, Chain Rule of Mutual Information (Shannon, 4848))

 )AA|Y;I(AY);AAI(A
:General In







ii

i

    
E /Mi i i

11,-ii

(DOE)iO h lM

11,-ii

11,-iin21

Y),A...,A|H(A)A...,A|H(A

)A...,A|Y;I(AY);A,...,A,I(A

(DM)y uncertaint Remaining
 Entropy  /Minimize(DOE)ity OrthogonalMax 

Use a Dual Information Distance approach  wrt:Use a Dual Information Distance approach, wrt:
1.Current state / partition 121 ,..., AAA iic  

2.Target variable
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The DID Partition ApproachThe DID Partition Approach

Orthogonality and Information GainOrthogonality and Information Gain

 When selecting attribute Ai examine the resulting 
partition with respect to dual Inf  distance:partition with respect to dual Inf. distance:

 Current partition (current tree state)
 Target/class partition Target/class partition

α ααMaximize Minimize
cα Yαiα

Orthogonality
(DOE approach)

Remaining Uncertainty
(DM approach)
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LRTA* AlgorithmLRTA* Algorithm

S1
S1,2

)(sd~

1

S

)s,(sdist Y12

)s,(sdist 101

)s,(sdist 201 )(sd iS0 S2
S2,3

Si,j,k
SY)s,(sdist Y22

)( 201

S3
S3,1)s,(sdist n01

Sn

)s,(sdist Yn2 (Korf, 1990)

Applying LRTA* concepts to Decision-Tree Construction 
 

State si  partition i 
Neighbors of state si  Refinement of partition i (add an attribute) 

-17-

Distance d(si,sj)  A distance metric defined over partitions 



The DID ApproachThe DID Approach

RokhlinRokhlin ((6060’s) ’s) distance measuredistance measure

 This distance follows the required properties of a metric: This distance follows the required properties of a metric:

 Relation between mutual information and Rokhlin metric

-18-



The DID ApproachThe DID Approach

A general objective function

denotes the orthogonality measure distance between the 

t titi d th t h titicurrent partition and the next chosen partition

denotes the information (or remaining uncertainty) distance 

b t th h titi d th l titibetween the chosen partition and the class partition

α ααMaximize Minimize
cα Yαjα

Orthogonality
(DOE approach)

Remaining Uncertainty
(DM approach)

-19-
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The DID ApproachThe DID Approach

A general objective function

denotes the orthogonality measure distance between the 

t titi d th t h titicurrent partition and the next chosen partition

denotes the information (or remaining uncertainty) distance 

b t th h titi d th l titibetween the chosen partition and the class partition

α ααMaximize Minimize
cα Yαjα

Rokhlin -> 
Conditional Entropy

Rokhlin

-20-

Korf, 1990



The DID ApproachThe DID Approach

Orthogonality between restricted partitionsOrthogonality between restricted partitions

A1 A2 A3 Y

1 1 1 2
 Let us consider the following example:
 F  A titi  A i  t th l

1 1 2 2

1 1 2 2

1 2 2 3

 For A1 partition A3 is most orthogonal

24.1)A|H(A  0.63)A|H(A 1213 
1 2 2 3

1 2 2 3

2 2 1 1

2 2 1 1

2 2 1 1

2 2 2 1

2 2 2 1

2 2 2 1
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The DID ApproachThe DID Approach

Orthogonality between restricted partitionsOrthogonality between restricted partitions

A1 A2 A3 Y

1 1 1 2
 Let us consider the following example:
 A d A  t th l  

1 1 2 2

1 1 2 2

1 2 2 3

 A1 and A3 are most orthogonal, 
however they do not classify Y

1 2 2 3

1 2 2 3

2 2 1 1

2 2 1 1

2 2 1 1

2 2 2 1

2 2 2 1

2 2 2 1
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The DID ApproachThe DID Approach

Orthogonality between restricted partitionsOrthogonality between restricted partitions

A1 A2 A3 Y

1 1 1 2
 Let us consider the following example:
 A d A  t th l  

1 1 2 2

1 1 2 2

1 2 2 3

 A1 and A3 are most orthogonal, 
however they do not classify Y

 Focusing on the orthogonality between 
1 2 2 3

1 2 2 3

2 2 1 1

 Focusing on the orthogonality between 
the restricted partitions:
For A1 =1: A2 is most orthogonal

2 2 1 1

2 2 1 1

2 2 2 1

1 2 g
For A1 =2: A3 is most orthogonal but 
this sub-set is already classified by A1

2 2 2 1

2 2 2 1
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The DID ApproachThe DID Approach

Orthogonality between restricted partitionsOrthogonality between restricted partitions

 Let us consider the following example:
 A d A  t th l  

A1 A2 A3 Y

1 1 1 2
 A1 and A3 are most orthogonal, 

however they do not classify Y
 Focusing on the orthogonality between 

1 1 2 2

1 1 2 2

1 2 2 3 Focusing on the orthogonality between 
the restricted partitions:
For A1 =1: A2 is most orthogonal

1 2 2 3

1 2 2 3

2 2 1 1
1 2 g

For A1 =2: A3 is most orthogonal but 
this sub-set is already classified by A1

2 2 1 1

2 2 1 1

2 2 2 1

 Full classification of Y is achieved
 The DM “Preprocess Approach” is not 

l h l f l

2 2 2 1

2 2 2 1

-24-

always helpful! 



The DID ApproachThe DID Approach

RokhlinRokhlin remainigremainig uncertainty measureuncertainty measure

A1 A2 Y The Rokhlin distance measure takes into 

1 1 X

2 1 X

account two terms:

3 1 X

4 2 O

5 2 O5 2 O

6 2 O

-25-



The DID ApproachThe DID Approach

Rokhlin distance measureRokhlin distance measure

A1 A2 Y The Rokhlin distance measure takes into 

1 1 X

2 1 X

account two terms:

3 1 X

4 2 O

5 2 O5 2 O

6 2 O
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The DID ApproachThe DID Approach

Rokhlin distance measureRokhlin distance measure

A1 A2 Y The Rokhlin distance measure takes into 

1 1 X

2 1 X

account two terms:

3 1 X

4 2 O

5 2 O5 2 O

6 2 O

 Prefer A2 over A1

-27-

 Partition the dataset “as little” as required  



The DID ApproachThe DID Approach

NotationNotation

 - The “initial partition”: {{X},{}} 

h “ l / ” - The “class/target partition”

 - current partition (current state of the tree)

 - the partition that results from the selection of attribute i

 - sub-partition of       where the levels of attribute i are equal 

to j

 Selecting an attribute in a node may results in a refinement of the current 

partition, i.e., iji α of refinement a is αα 

-28-



The DID ApproachThe DID Approach

Information and Remaining UncertaintyInformation and Remaining Uncertainty

 Look for a partition that results in maximum information 
(minimum classification uncertainty)(minimum classification uncertainty)

 Using Entropy: choosing the partition i which gives 
minimum )α|H(αminimum

 Using Rokhlin: choosing the partition i which gives 
minimum

)α|H(α iY

)α|H(α)α|H(α)αR(α minimum )α|H(α)α|H(α)α,R(α YiiYiY 

Minimizing the staying “as close as Minimizing the 
classification 
uncertainty

staying as close as 
possible” to Y avoiding 
unnecessary refinement

-29-



The Proposed DID AlgorithmThe Proposed DID Algorithm

-30-



The Proposed DID AlgorithmThe Proposed DID Algorithm
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The Proposed DID AlgorithmThe Proposed DID Algorithm
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The Proposed DID AlgorithmThe Proposed DID Algorithm
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The Proposed DID AlgorithmThe Proposed DID Algorithm
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The Proposed DID AlgorithmThe Proposed DID Algorithm
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The Proposed DID AlgorithmThe Proposed DID Algorithm
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The Proposed DID AlgorithmThe Proposed DID Algorithm
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ExampleExample

Training Data SetTraining Data Set

A4A3A2A1Y  

111411

2 221122

121123

121124

123235

112236

113247

113348

133359

1311410 1311410

2421411

2422412
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IDID3 3 exampleexample
21 AA 

12α

1A 31 AA  321 AAA 

1α 13α 123α

α0

2A

A

41 AA 

AA

421 AAA 

AAA

4321 AAAA 

αY

2α 14α 124α
1234α

0
3A

A

32 AA 

AA 

431 AAA 

AAA 

Y

3α 23α 134α

4A 42 AA 

43 AA 

432 AAA 

4α 24α 234α

0 i 0 ji  0 kji  0 f Y

34α

j j



IDID3 3 exampleexample

1A

1α

α0

2A

A
αY

2α
0

3A

A

Y

3α

4A

4α

0 i 0



IDID3 3 exampleexample
Classification Tree Partitions Graph

0.904

A1
A1=1 A1=2 1αA1=3

A1=4

α0 αY

1.32α

0 Y
0.937

1.87
3α

4α

Entropy lConditionadistance2
 1;w ;w

:for Results

21



 0



IDID3 3 exampleexample
Classification Tree Partitions Graph

A1
A1=1 0.651α

12α

α

αY

0

0.95

A3 13α

α Y

Restricted 
to A1=1 

14α

23α1
subset

23

24α

Entropy lConditiona distance2
 1;w 0;w

:for Results

21





24

34α



IDID3 3 exampleexample
Classification Tree Partitions Graph

A1
A1=1 A1=2 1

12α

α

1α αY

0.5

0.69

A3 A3 13α

α1α Y

Restricted 
to A1=2 

14α

23α1
subset

23

24α

Entropy lConditionadistance2
 1;w ;w

:for Results

21



 0

24

34α



IDID3 3 exampleexample
Classification Tree Partitions Graph

A1
A1=1 A1=2 1

12α

α
A1=3

A1=4

1α αY

0

1

A3 A3 13α

α

A3 1

1α Y

Restricted 
to A1=3 

14α

23α1
subset

23

24α

Entropy lConditionadistance2
 1;w ;w

:for Results

21



 0

24

34α



IDID3 3 exampleexample
Classification Tree Partitions Graph

12α

α 123α

A1
A1=1 A1=2 A1=3

A1=4

αY

13α

α

123α

124α1α

A3 A3 A3 1

Y
14α

23α

124α

134α

1α

23

24α 234α 1234α24

34α



IDID3 3 exampleexample
Classification Tree Partitions Graph

123α

A1
A1=1 A1=2 A1=3

A1=4

αY

0123α

13α

A3 A3 A3 1

42 4

2
3 4

43

1
2 4

54

1 3

A Y

1

134α

1342 4 43 54A2

43

32

43

Average depth = 2.1

Entropy lConditionadistance2
 1;w ;w

:for Results

21



 0
No. of decision = 5

No. of leaves = 10

Max steps = 3Max steps = 3



The DID approachThe DID approach

Α12

21 AA 

α1 Α13 α123

1A 31 AA  321 AAA 

α0

α2 Α14 α124
α1234

2A

A

41 AA 

AA

421 AAA 

AAA

4321 AAAA 

αY0

α3 Α23 α134

1234
3A

A

32 AA 

AA 

431 AAA 

AAA 

Y

α4 Α24 α234

4A 42 AA 

43 AA 

432 AAA 

Α34

0 i 0 ji  0 kji  0 f Yj j



The DID approachThe DID approach

α1

1A

α0

α2

2A

A
αY0

α3

3A

A

Y

α4

4A

0 i 0



The DID approachThe DID approach
Classification Tree Partitions Graph

α1
1.541.78

A3
A3=1 A3=2 A3=3

A3=4

α0

α2
αY

2.11.55

4

0

α3

Y
1.73

2.5

1.92

0.81

α4

:for Results

)αRokhlin(αdistance2
)α,Rokhlin(αdistance1

 1;w 2;w
:for Results

0i

21




)α,Rokhlin(αdistance2 Yi



The DID approachThe DID approach
Classification Tree Partitions Graph

21 AA 

α12

α
31 AA 

A3
A3=1 A3=2 A3=3

A3=4

αY

α13

α
41 AA 

11.5
4A2

41 3

1
2 3

α23

Yα14

32 AA 
01.5

0

α3

41 3

:for Results

23

α24

42 AA 

1.50

)αRokhlin(αdistance2
)α,Rokhlin(αdistance1

 1;w 2;w
:for Results

0i

21




24

α34

43 AA 
Restricted 

to A3=1 
subset)α,Rokhlin(αdistance2 Yi subset



The DID approachThe DID approach
Classification Tree Partitions Graph

α

A3
A3=1 A3=2 A3=3

A3=4

αY

α13 00.82

α3

4A2 A2

41 3

1
2 3

32

1 3

Y

α23

00.82

0 82

341 3 32

23 1.40.82

Restricted 
to A3=2 
subsetα34



The DID approachThe DID approach
Classification Tree Partitions Graph

α

A3
A1=1 A1=2 A1=3

A1=4

αY

α13 01

α3

4A2 A2 A2

41 3

1
2 3

32

1 3

54

1 3

Y

α23

01

0

341 3 32 54

23 10

Restricted 
to A3=3 
subsetα34



Comparing the Classification TreesComparing the Classification Trees

DD Tree ID3/c4.5 Tree

A3
A1=1 A1=2 A1=3

A1=4

A1
A1=1 A1=2 A1=3

A1=4

4A2 A2 A2

41 3

1
2 3

32

1 3

54

1 3

A3 A3 A3 1

42 4

2
3 4

43

1
2 4

54

1 3

A41 3 32 54 42 4 43 54A2

43

32

Average depth = 1.8

43

Average depth = 2.1

No. of decision = 4

No. of leaves = 8

Max steps = 2

No. of decision = 5

No. of leaves = 10

Max steps = 3Max steps = 2 Max steps = 3



Some Results



Summarizing Comparison between ID3, C4.5 and 
DID decision trees

Dataset Size ID3 C4.5 DID

DID decision trees

#instances #Attributes Average 
Depth Accuracy Average 

Depth Accuracy Average 
Depth Accuracy

Monk's-1 124 6 3.21 82% 3.32 82% 2.66 96.%

Monk's-2 169 6 4.34 70.4% 4.6 75% 4.2 66%

Monk's full 
Random set 216 6 1.93 100% 2.04 100% 1.8 100%Random set

Connect4 67,557 42 5.85 73.8% 10.16 79.4% 5.64 75%

SPECT Heart 80 22 9.6 75.1% 10.2 80.3% 9.3 76%

Voting 435 16 1.8 96% 2.2 96.6% 2.1 96%
Balance Scale 625 4 3.4 76.3% 3.4 78.6% 3.3 76.6%

Cars 1728 6 2.82 77.1% 2.83 77% 2.77 78.5%
Tic-Tac-Toe 958 9 4.62 80.6% 4.62 80.4% 4.6 76.2%
Soy Beans 47 35 1.35 100% 2.37 97% 1.32 97%

Lymphography 148 18 2.71 75.1% 6.51 77.3% 2.6 72.6%



Case #features SVM 
accuracy%

J48 % DID accuracy 
%

australian 14 55.5 86.2 86.9
breast 9 96.5 93.6 93.5
diabetes 8 65.1 74.2 72.6
glass 8 69.16 50.1 51.8
glass2 8 76 68 75 3 82 1glass2 8 76.68 75.3 82.1
heart 13 55.93 79.4 79.5
iris 4 96.67 94.4 95.6
pima 36 65.1 73.1 72.2
segment 18 63.9 94.1 93.6
Shuttle-
small

9 89.41 62 61.9

vehicle 18 30 5 69 7 65 2vehicle 18 30.5 69.7 65.2

waveform-21 21 86.1 76.3 73.5
cleve 13 54.73 78.9 78
crx 15 65 67 87 5 87 6crx 15 65.67 87.5 87.6
german 20 70 65.2 66.6
hepatitis 19 83.55 57.4 64.2
chess 36 93.83 99.3 99.8
corral 6 96.89 98.1 98.3
flare 9 82.37 61.2 68.9
mofn-3-7-10 10 100 100 100
soybean-
large

35 87.19 95.8 94.2

vote 15 95.35 94.7 95.4



Accuracy of C4.5 (J48) and DID as a function of 
the number of removed features for different casesthe number of removed features for different cases 

taken from the UCI Repository
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Summary & ContributionSummary & Contribution

Modeling the tree construction problem as g p
a shortest path problem over a graph of 
partitions as nodespartitions as nodes.

 A unified framework for existing DT algorithmsg g
 Further Generalization via different metrics, e.g, 

Rokhlin  Entropy  etc  supported by ITRokhlin, Entropy, etc. supported by IT
 Orthogonally vs. Information Gain
 Big Data fit: Shorter trees with smaller decisions 

for online scoring and recommendation

-
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Thank you !Thank you !
Questions?


