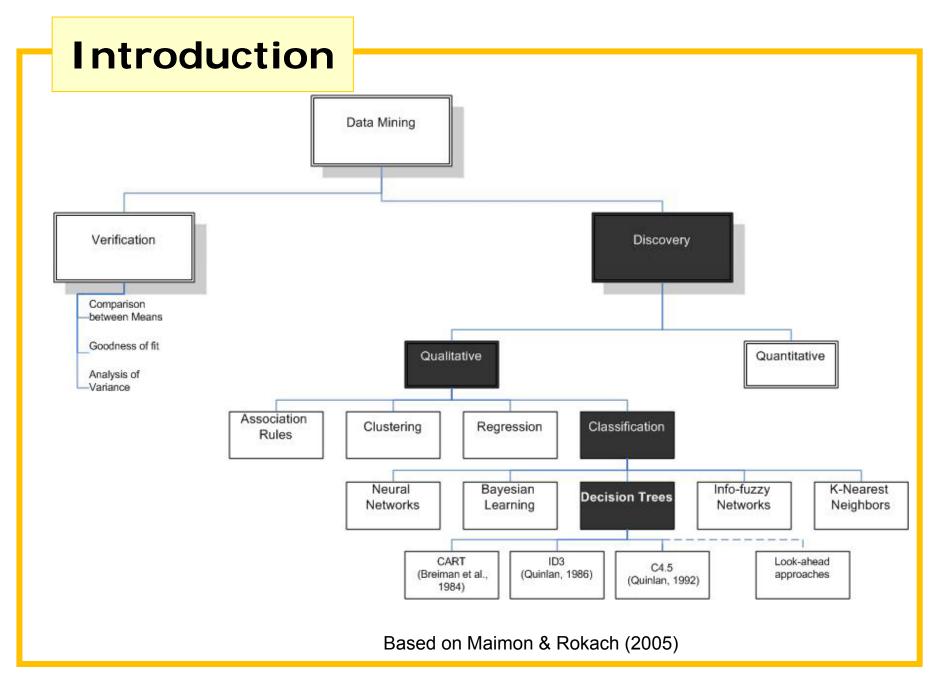
Efficient Construction of Decision Trees by the Dual Information Distance Method

Irad Ben-Gal

Joint work with Alexandra Dana, Niv Shkolnik and Gonen Singer Dept. of Industrial Engineering Tel Aviv University

Outline

- 1. Introduction & Motivation
- 2. Proposed Partitions Approach
- 3. Example
- 4. Results
- 5. Mid-level solutions
- 6. Summary & Contribution



Classification (Supervised Learning)

"In classification, there is a target categorical variable, which is partitioned into predetermined classes or categories. The data mining model examine a large set of records, each record containing information on the target variable as well as a set of input or predictor variables". (Larose, 2005).

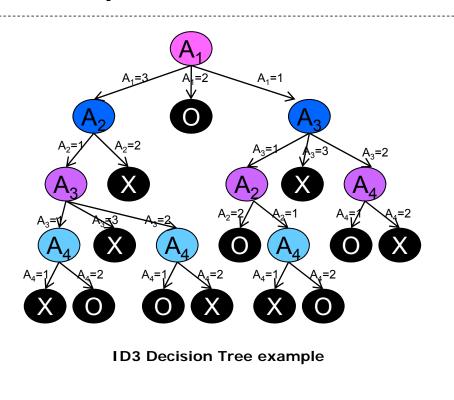
Construction of Decision Tree

- Classification variables
 - Class/Target variable Y
 - Attributes set {A₁,A₂,...,A_n}
- □ The tree partitions Y by selecting attributes A_i, aiming that each leaf will contain a single class of Y
- Performance measures
 - Minimizing the classification error-rates
 - Minimizing the average depth of the tree
 - Minimizing the number of nodes/leaves

Intro	JUCTI	nn

#	A1	A2			
1		• •	A3	A4	Y
	1	1	1	1	x
2	1	1	1	2	0
3	1	1	2	1	0
4	1	1	2	2	х
5	1	1	3	2	X
6	1	2	1	1	0
7	1	2	1	2	0
8	1	2	3	2	х
9	2	1	1	1	0
10	2	1	1	2	0
11	2	1	2	1	0
12	2	2	1	1	0
13	2	2	1	2	0
14	2	2	2	1	0
15	2	2	2	2	0
16	3	1	1	2	х
17	3	1	2	1	х
18	3	1	2	2	0
19	3	1	3	1	х
20	3	1	3	2	х
21	3	2	2	1	х
22	3	2	2	2	х
23	3	2	3	1	х
24	3	1	1	1	0
25	3	2	3	2	х

Example: ID3 (Lee & Olafsson, 2006)



- 4 categorical attributes A₁,...,A₄
- Each selection splits the set into two or more partitions

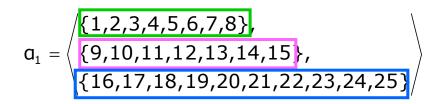
	A1	A2	A3	A4	Y
1	1	1	1	1	Х
2	1	1	1	2	0
3	1	1	2	1	0
4	1	1	2	2	х
5	1	1	3	2	Х
6	1	2	1	1	0
7	1	2	1	2	0
8	1	2	3	2	х
9	2	1	1	1	0
10	2	1	1	2	0
11	2	1	2	1	0
12	2	2	1	1	0
13	2	2	1	2	0
14	2	2	2	1	0
15	2	2	2	2	0
16	3	1	1	2	Х
17	3	1	2	1	Х
18	3	1	2	2	0
19	3	1	3	1	х
20	3	1	3	2	Х
21	3	2	2	1	х
22	3	2	2	2	х
23	3	2	3	1	х
24	3	1	1	1	0
25	3	2	3	2	Х

Partition by Y

 $a_{Y} \equiv \left\langle \begin{cases} 1,4,5,8,16,17,19,20,21,22,23,25 \}, \\ \{2,3,6,7,9,10,11,12,13,14,15,18,24 \} \end{cases} \right\rangle$

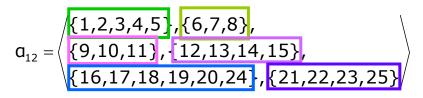
l r	ntrc	du	ctio	n	
	A1	A2	A3	A4	Y
1	1	1	1	1	х
2	1	1	1	2	0
3	1	1	2	1	0
4	1	1	2	2	х
5	1	1	3	2	х
6	1	2	1	1	0
7	1	2	1	2	0
8	1	2	3	2	х
9	2	1	1	1	0
10	2	1	1	2	0
11	2	1	2	1	0
12	2	2	1	1	0
13	2	2	1	2	0
14	2	2	2	1	0
15	2	2	2	2	0
16	3	1	1	2	х
17	3	1	2	1	Х
18	3	1	2	2	0
19	3	1	3	1	Х
20	3	1	3	2	Х
21	3	2	2	1	X
22	3	2	2	2	X
23	3	2	3	1	Х
24	3	1	1	11	0
25	3	2	3	2	Х

Partition by A_1



	A1	A2	A3	A4	Y
1	1	1	1	1	X
2	1	1	1	2	0
3	1	1	2	1	О
4	1	1	2	2	Х
5	1	1	3	2	Х
6	1	2	1	1	0
7	1	2	1	2	0
8	1	2	3	2	х
9	2	1	1	1	0
10	2	1	1	2	0
11	2	1	2	1	0
12	2	2	1	1	0
13	2	2	1	2	0
14	2	2	2	1	0
15	2	2	2	2	0
16	3	1	1	2	X
17	3	1	2	1	X
18	3	1	2	2	Ο
19	3	1	3	1	X
20	3	1	3	2	Х
21	3	2	2	1	Х
22	3	2	2	2	Х
23	3	2	3	1	X
24	3	1	1	1	0
25	3	2	3	2	Х

Partition by $A_1 \lor A_2$



Types of Decision Tree Algorithms

Optimal Decision Trees

□ Consider all possible splits (all combinations)

□ Construction is NP-hard (Hackock et al., 1996)

Heuristic Trees

Greedy trees (<u>ID3, C4.5</u>, CART)

• At each step consider only the next split

□ Look-ahead trees

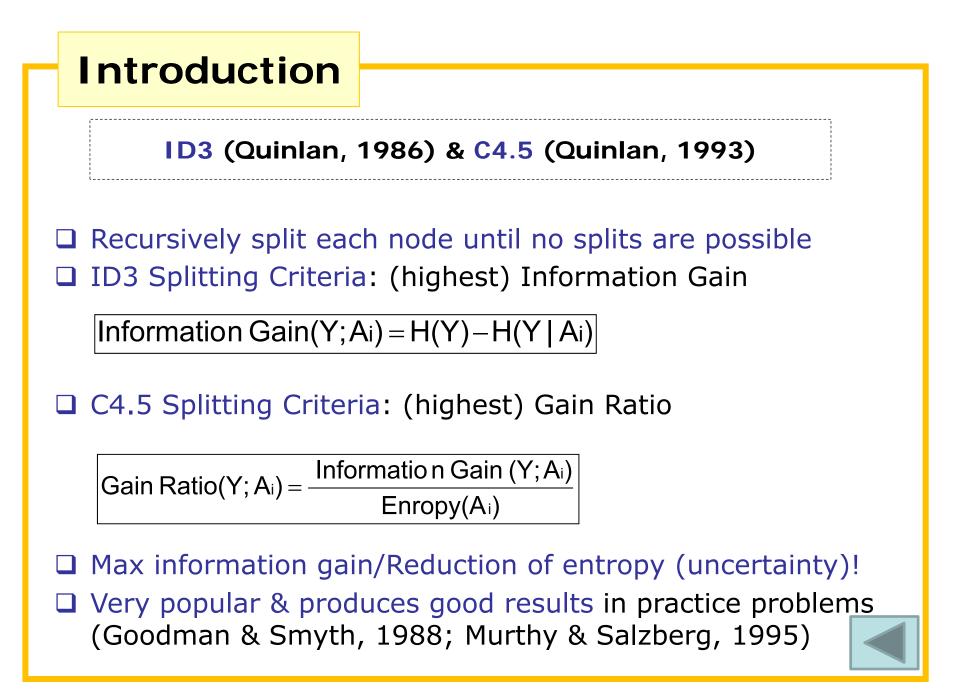
- consider up-coming splits (usually 2-steps ahead)
- Computationally "pricy": O(mn^K) for n variables; m records, and a K-steps look-ahead procedure

Types of Decision Tree Algorithms

Heuristic Trees

Can we do better than greedy selection without extensive computations?

Maybe: e.g. by using the Dual Information Distance (DID) approach on a 'partitions graph'



Outline

1. Introduction & Motivation

2. IT Partitions Approach

- 3. Example
- 4. Results
- 5. Mid-level solutions
- 6. Summary & Contribution

Information Theory

Chain Rule of Mutual Information (Shannon, 48)

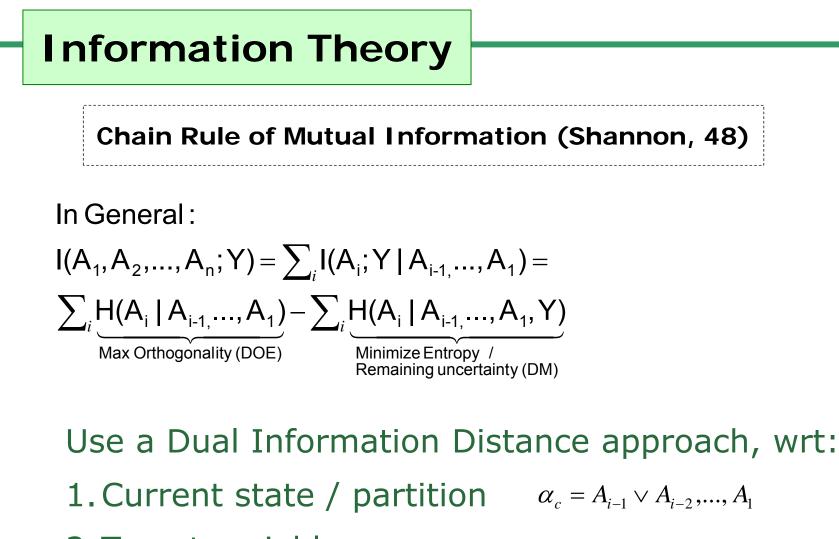
For two attributes, A_1, A_2 : $I(A_1, A_2; Y) = I(A_1; Y) + I(A_2; Y|A_1) =$ $H(A_1) + H(A_2|A_1) - H(A_1|Y) - H(A_2|A_1, Y)$

In General:

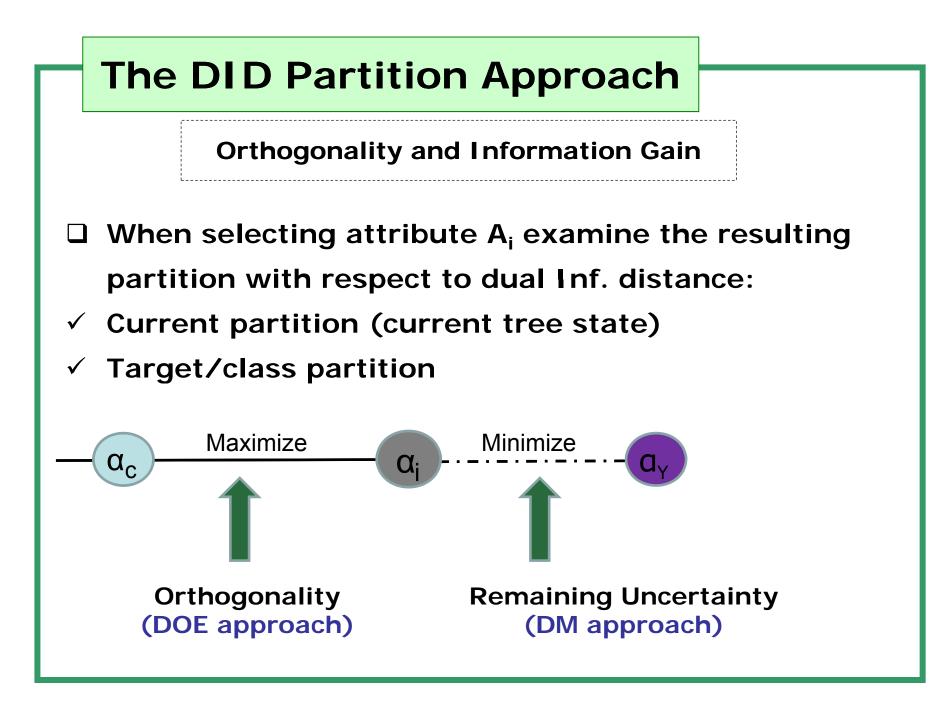
$$I(A_{1}, A_{2}, ..., A_{n}; Y) = \sum_{i} I(A_{i}; Y/A_{i-1}, ..., A_{1}) = \sum_{i} \underbrace{H(A_{i}/A_{i-1}, ..., A_{1})}_{i} - \sum_{i} \underbrace{H(A_{i}/A_{i-1}, ..., A_{1}, Y)}_{i}$$

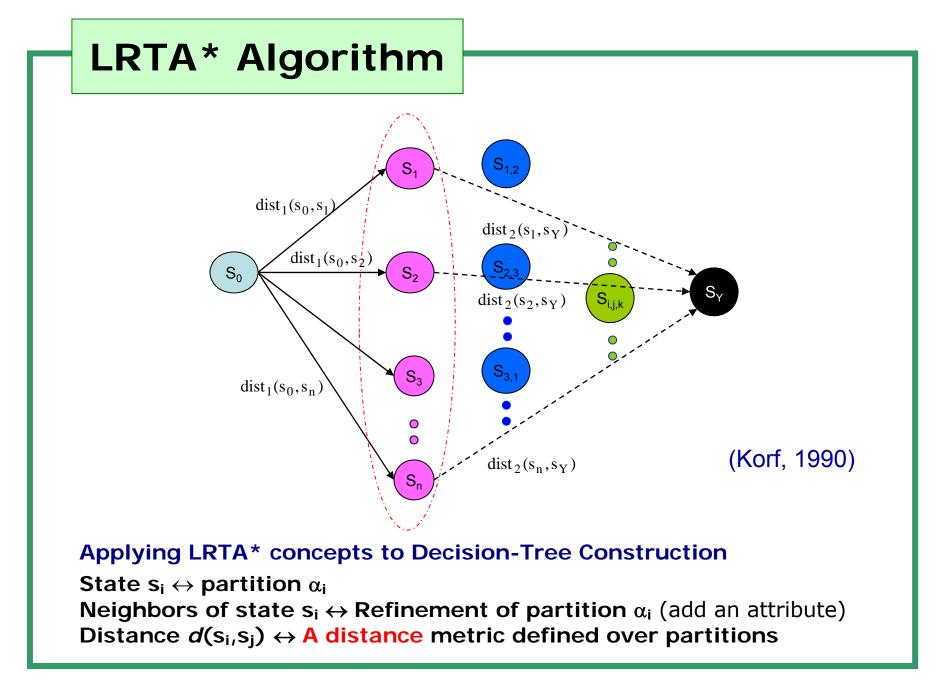
Max Orthogonality (DOE)

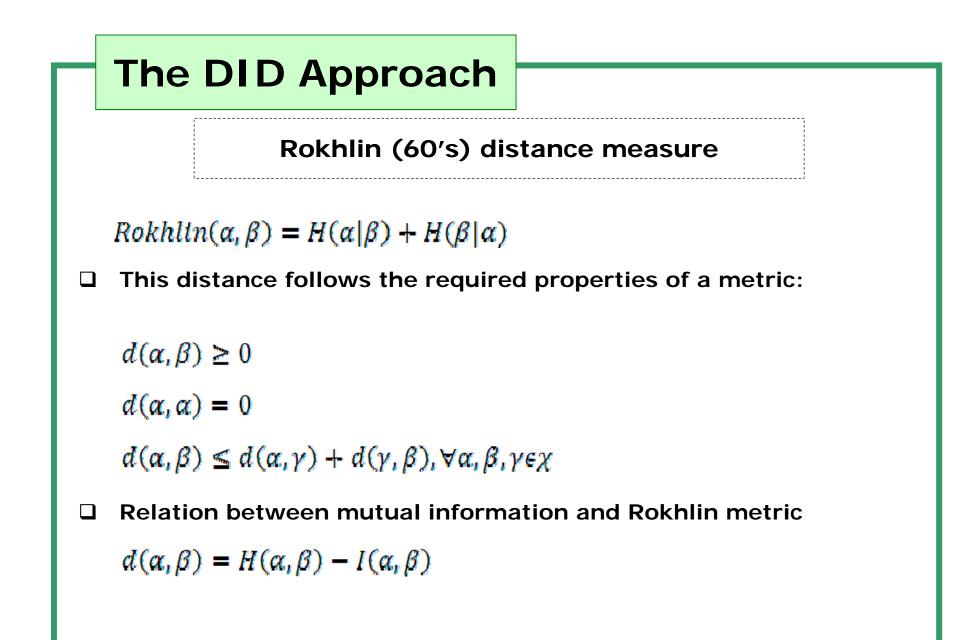
Minimize Entropy / Remaining uncertainty (DM)



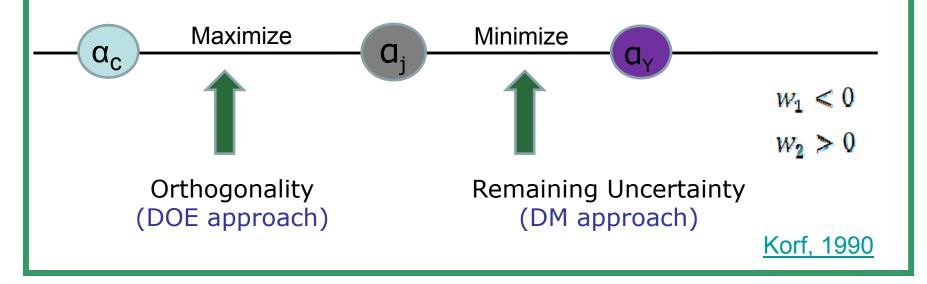
2. Target variable



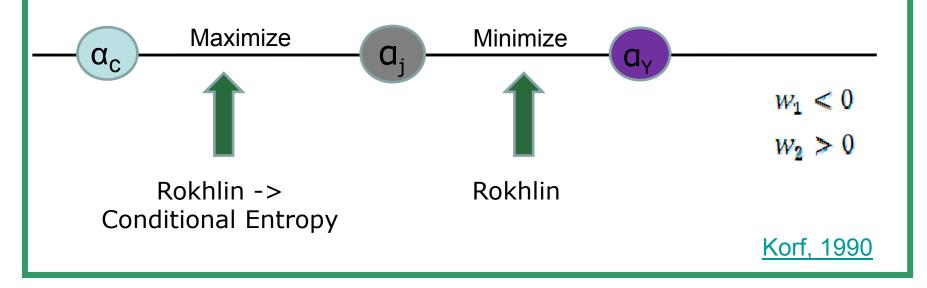


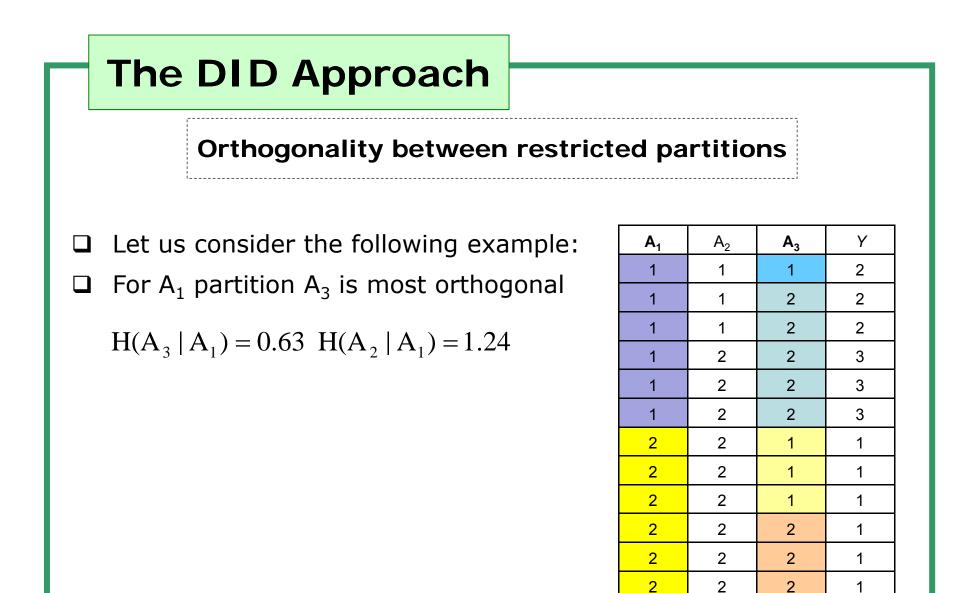


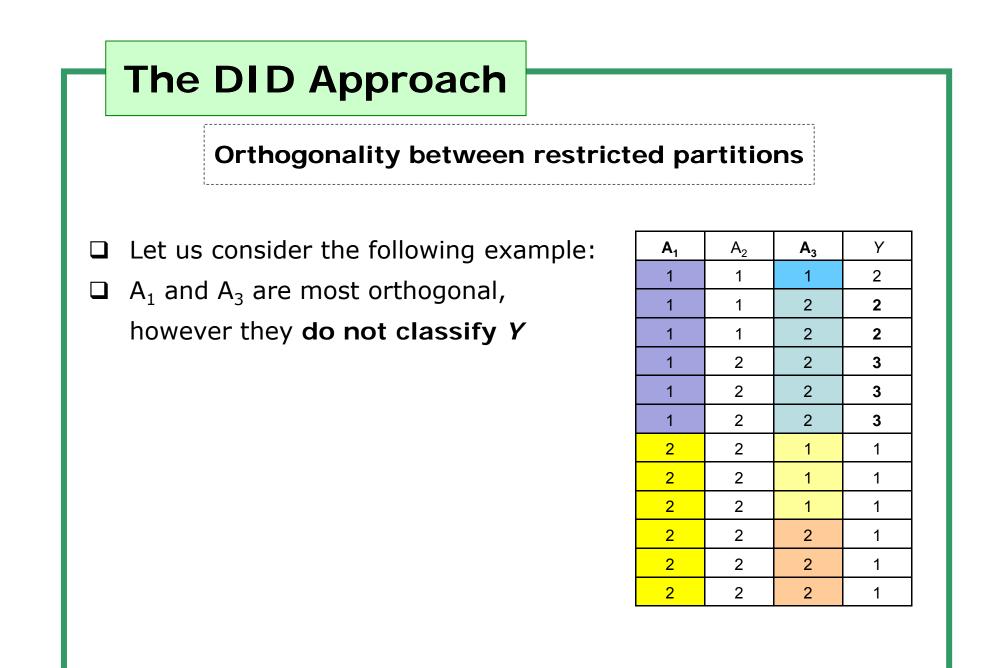
- A general objective function $\min_{\alpha_j} \{w_1 d_1(\alpha_c, \alpha_j) + w_2 d_2(\alpha_j, \alpha_Y)\}$
- *d*₁ denotes the orthogonality measure distance between the current partition and the next chosen partition
- d_2 denotes the information (or remaining uncertainty) distance between the chosen partition and the class partition



- A general objective function $\min_{\alpha_j} \{w_1 d_1(\alpha_c, \alpha_j) + w_2 d_2(\alpha_j, \alpha_Y)\}$
- *d*₁ denotes the orthogonality measure distance between the current partition and the next chosen partition
- d_2 denotes the information (or remaining uncertainty) distance between the chosen partition and the class partition







Orthogonality between restricted partitions

- □ Let us consider the following example:
- A₁ and A₃ are most orthogonal,
 however they do not classify Y
- Focusing on the orthogonality between the restricted partitions:

For $A_1 = 1$: A_2 is most orthogonal For $A_1 = 2$: A_3 is most orthogonal but this sub-set is already classified by A_1

A ₁	A ₂	A ₃	Y
1	1	1	2
1	1	2	2
1	1	2	2
1	2	2	3
1	2	2	3
1	2	2	3
2	2	1	1
2	2	1	1
2	2	1	1
2	2	2	1
2	2	2	1
2	2	2	1

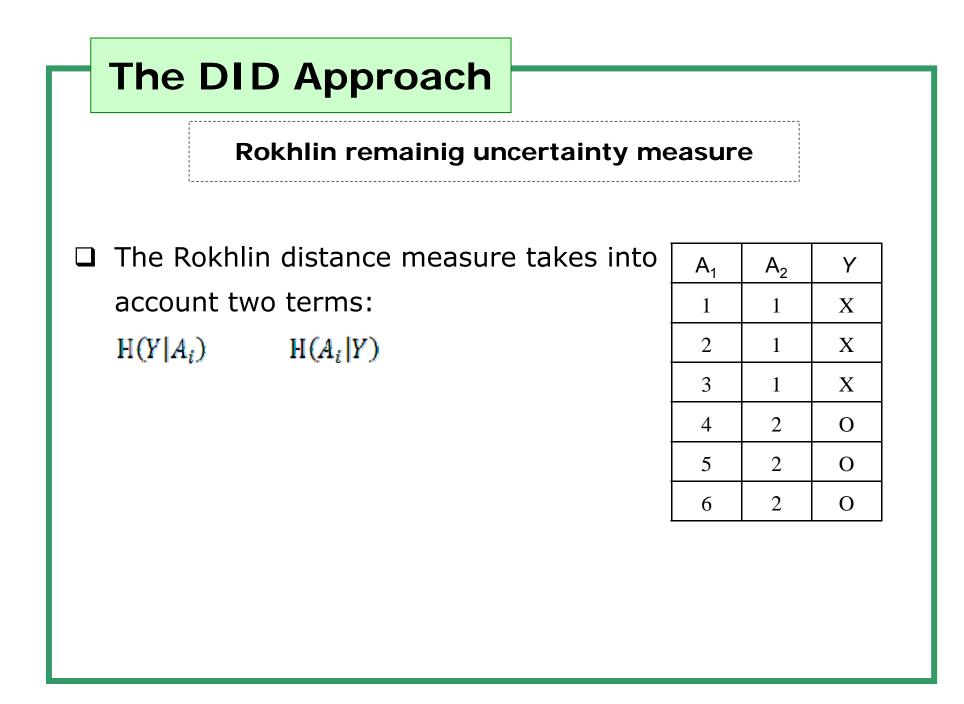
Orthogonality between restricted partitions

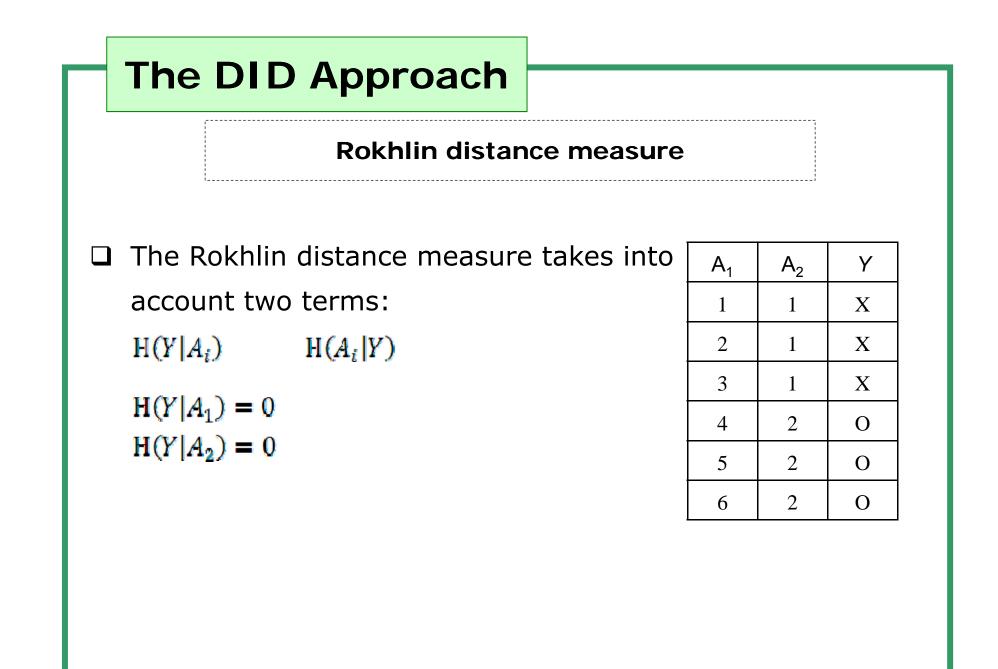
- □ Let us consider the following example:
- □ A_1 and A_3 are most orthogonal, however they do not classify *Y*
- Focusing on the orthogonality between the restricted partitions:

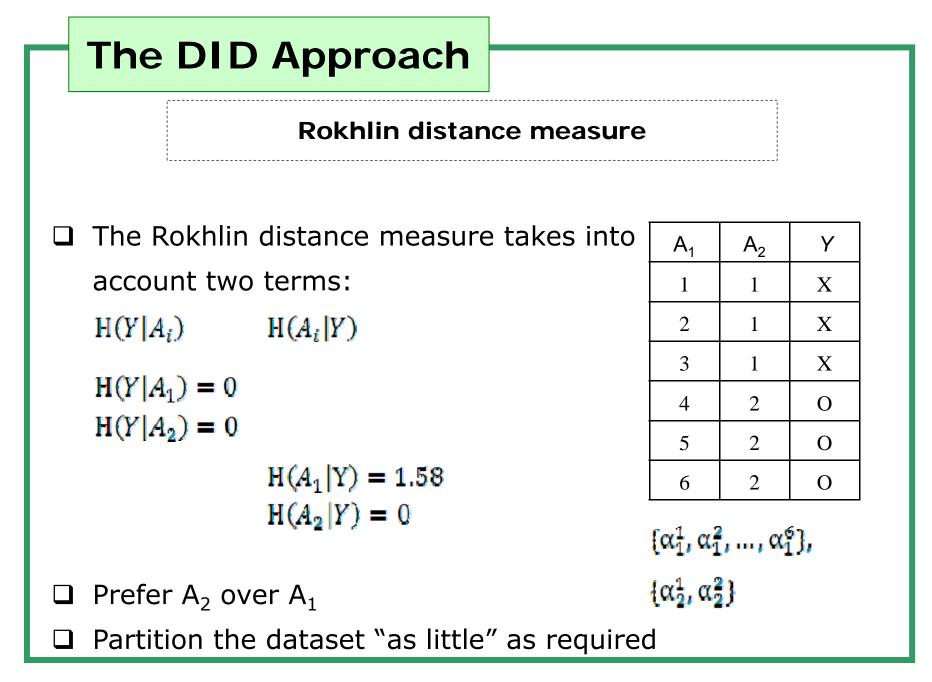
For $A_1 = 1$: A_2 is most orthogonal For $A_1 = 2$: A_3 is most orthogonal but this sub-set is already classified by A_1

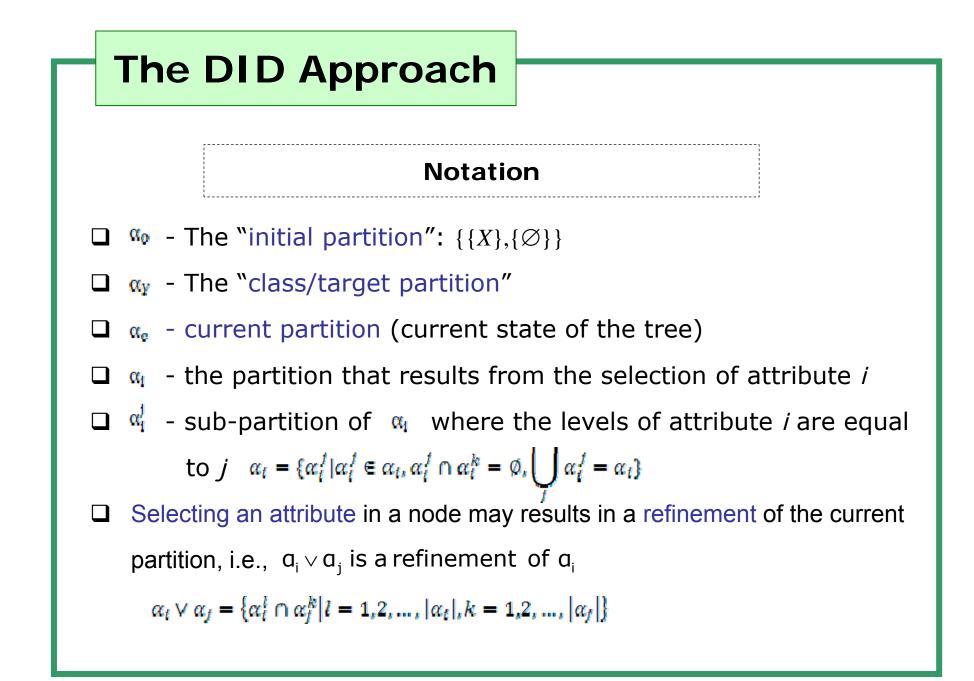
- □ Full classification of *Y* is achieved
- The DM "Preprocess Approach" is not always helpful!

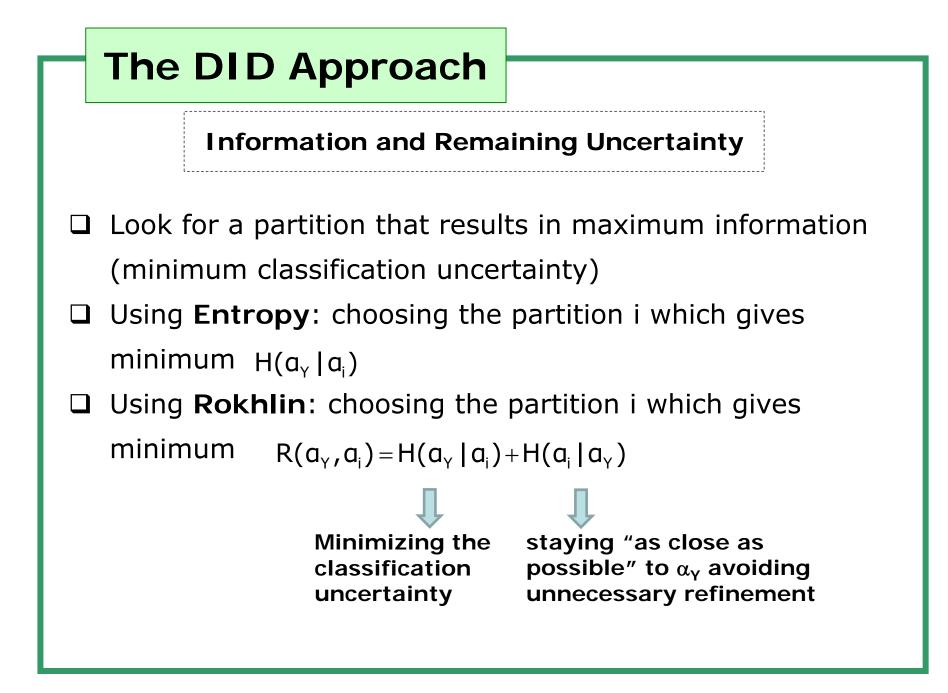
A ₁	A ₂	A ₃	Y
1	1	1	2
1	1	2	2
1	1	2	2
1	2	2	3
1	2	2	3
1	2	2	3
2	2	1	1
2	2	1	1
2	2	1	1
2	2	2	1
2	2	2	1
2	2	2	1











Algorithm (DID)

Given i) set of weights w_1, w_2 ; ii) two distance metrics denoted by d_1 and d_2 ;

iii) attributes partitions $\alpha_1, \alpha_2, ..., \alpha_n$; and iv) a class partition α_Y

Do:

Init current partition $\alpha_c \leftarrow \alpha_0$

Init $E = \{\emptyset\}, F = \{1, 2, ..., n\} \leq groups of the "used" and the "unused" attributes > 0$

For each sub-partition $\alpha_c^i \in \alpha_c$ such that $i ||\alpha_c^i| > 1$; $ii ||\alpha_Y||_{\alpha_c^i}$ is not yet classified; and iii ||F| is not empty

start the **Search** procedure (for the sub-partition α_c^i)

Algorithm (DID)

Given i) set of weights w_1, w_2 ; ii) two distance metrics denoted by d_1 and d_2 ;

iii) attributes partitions $\alpha_1, \alpha_2, \dots, \alpha_n$; and iv) a class partition α_Y

Do:

Init current partition $\alpha_c \leftarrow \alpha_0$

Init $E = \{\emptyset\}, F = \{1, 2, ..., n\} \leq groups of the "used" and the "unused" attributes > 0$

For each sub-partition $\alpha_c^i \in \alpha_c$ such that $i || \alpha_c^i || > 1$; $ii || \alpha_Y ||_{\alpha_c^i}$ is not yet classified; and iii) F is not empty start the **Search** procedure (for the sub-partition α_c^i)

Algorithm (DID)

Given i) set of weights w_1, w_2 ; ii) two distance metrics denoted by d_1 and d_2 ;

iii) attributes partitions $\alpha_1, \alpha_2, ..., \alpha_n$; and iv) a class partition α_Y

Do:

Init current partition $\alpha_c \leftarrow \alpha_0$

Init $E = \{\emptyset\}, F = \{1, 2, ..., n\} \leq groups of the "used" and the "unused" attributes > 0$

For each sub-partition $\alpha_c^i \in \alpha_c$ such that $i \mid \alpha_c^i \mid > 1$; $ii \mid \alpha_Y \mid_{\alpha_c^i}$ is not yet classified; and $iii \mid F$ is not empty

start the **Search** procedure (for the sub-partition α_c^i)

Function Search. Given set α_c^i and the attributes partitions $\alpha_1, \alpha_2, ..., \alpha_n$; $E_{\infty}^i F$;

- 1. Init current partition α_c by α_c^i ; init $E_c \leftarrow E$; $F_c \leftarrow F$
- Normalize probabilities of the elements of αⁱ_c.
- 3. Create local class partition $\alpha_{Y}|_{\alpha_{c}}$.
- 4. Generate neighborhood partitions:
 - $N(\alpha_c) = \{\alpha_j |_{\alpha_c}\}, j \in F_c, F_c = \{j : A_j \text{ not selected by the algorithm yet}\}$
- 5. Normalize probabilities of neighbors and of the class partition;
- 6. Obtain distance measures by $d_1(\alpha_c, \alpha_j|_{\alpha_c})$ and $d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c})$, $j \in F_c$
- Choose next partition: The next partition is selected as follows (ties are resolved arbitrary):

 $\alpha_{next} \leftarrow \arg \min_{\alpha_j \in N(\alpha_c)} \{ w_1 d_1(\alpha_c, \alpha_j |_{\alpha_c}) + w_2 d_2(\alpha_j |_{\alpha_c}, \alpha_Y |_{\alpha_c}) \} \square$

- 8. Update E_c and F_c (move j from F_c to E_c)
- 9. Move to next partition: $\alpha_c \leftarrow \alpha_{next}$
- 10. For each sub-partition $\alpha_{c}^{i}\epsilon\alpha_{c}$ such that i) $|\alpha_{c}^{i}| > 1$; ii) $\alpha_{Y}|_{\alpha_{c}^{i}}$ is not yet
 - classified; and iii) F_c is not empty

start the Search procedure (for sub-partition α_c^i , $F_{c_{\infty}}E_c$)

If $\alpha_Y|_{\alpha_c}$ is classified, return.

- If $|\alpha_c| = 1$ classify according to the instance's class value, return.
- If $F_c = \{\emptyset\}$ classify according to the most common value of the class attribute, return.

- 1. Init current partition α_c by α_c^i ; init $E_c \leftarrow E$; $F_c \leftarrow F$
- 2. Normalize probabilities of the elements of α_c^i .
- 3. Create local class partition $\alpha_Y|_{\alpha_c}$.
- 4. Generate neighborhood partitions:

 $N(\alpha_c) = \{\alpha_j|_{\alpha_c}\}, j \in F_c, F_c = \{j : A_j \text{ not selected by the algorithm yet}\}$

5. Normalize probabilities of neighbors and of the class partition;

resolved arbitrary):

$$\alpha_{next} \leftarrow \arg \min_{\alpha_j \in N(\alpha_c)} \{ w_1 d_1(\alpha_c, \alpha_j|_{\alpha_c}) + w_2 d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c}) \} \square$$

- 8. Update E_c and F_c (move j from F_c to E_c)
- 9. Move to next partition: $\alpha_c \leftarrow \alpha_{next}$
- 10. For each sub-partition $\alpha_c^i \in \alpha_c$ such that i) $|\alpha_c^i| > 1$; ii) $\alpha_Y|_{\alpha_c^i}$ is not yet

classified; and iii) F_c is not empty

start the Search procedure (for sub-partition α_c^i , $F_{c_{s_s}}E_c$)

If $\alpha_Y|_{\alpha_c}$ is classified, return.

- If $|\alpha_c| = 1$ classify according to the instance's class value, return.
- If $F_c = \{\emptyset\}$ classify according to the most common value of the class attribute, return.

Function Search. Given set α_{σ}^{i} and the attributes partitions $\alpha_{1}, \alpha_{2}, ..., \alpha_{n}; E_{\infty}^{i}F$;

- 1. Init current partition α_c by α_c^i ; init $E_c \leftarrow E$; $F_c \leftarrow F$
- Normalize probabilities of the elements of αⁱ_c.
- 3. Create local class partition $\alpha_{Y}|_{\alpha_{c}}$.
- 4. Generate neighborhood partitions:
 - $N(\alpha_{i}) = \{\alpha_{i} \mid i \in F, F = \{i: A, not selected by the algorithm vet\}$
- 6. Obtain distance measures by $d_1(\alpha_c, \alpha_j|_{\alpha_c})$ and $d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c})$, $j \in F_c$
- Choose next partition: The next partition is selected as follows (ties are resolved arbitrary):

 $\alpha_{next} \leftarrow \arg\min_{\alpha_j \in N(\alpha_c)} \{ w_1 d_1(\alpha_c, \alpha_j|_{\alpha_c}) + w_2 d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c}) \} \square$

- 8. Upaate E_c and F_c (move J from F_c to E_c)
- 9. Move to next partition: $\alpha_c \leftarrow \alpha_{next}$
- 10. For each sub-partition $\alpha_c^i \in \alpha_c$ such that i) $|\alpha_c^i| > 1$; ii) $\alpha_Y|_{\alpha_c^i}$ is not yet
 - classified; and iii) F_c is not empty

start the Search procedure (for sub-partition $\alpha_c^i, F_{c_{s_s}}E_c$)

- If $\alpha_Y|_{\alpha_c}$ is classified, return.
- If $|\alpha_c| = 1$ classify according to the instance's class value, return.
- If $F_c = \{\emptyset\}$ classify according to the most common value of the class attribute, return.

)} 🖂

Function Search. Given set α_c^i and the attributes partitions $\alpha_1, \alpha_2, ..., \alpha_n$; $E_{\infty}^i F$;

- 1. Init current partition α_c by α_c^i ; init $E_c \leftarrow E$; $F_c \leftarrow F$
- Normalize probabilities of the elements of αⁱ_c.
- 3. Create local class partition $\alpha_{Y}|_{\alpha_{c}}$.
- 4. Generate neighborhood partitions:
 - $N(\alpha_c) = \{\alpha_j |_{\alpha_c}\}, j \in F_c, F_c = \{j : A_j \text{ not selected by the algorithm yet}\}$
- 5. Normalize probabilities of neighbors and of the class partition;
- 6. Obtain distance measures by $d_1(\alpha_c, \alpha_j|_{\alpha_c})$ and $d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c})$, $j \in F_c$
- Choose next partition: The next partition is selected as follows (ties are resolved arbitrary):
- 8. Update E_c and F_c (move j from F_c to E_c)
- 9. Move to next partition: $\alpha_c \leftarrow \alpha_{next}$
- 10. For each sub-partition $\alpha_c^i \in \alpha_c$ such that i) $|\alpha_c^i| > 1$; ii) $\alpha_Y|_{\alpha_c^i}$ is not yet

classified; and iii) F_c is not empty

start the Search procedure (for sub-partition α_c^i , F_{cs,E_c})

If $\alpha_Y|_{\alpha_c}$ is classified, return.

- If $|\alpha_c| = 1$ classify according to the instance's class value, return.
- If $F_c = \{\emptyset\}$ classify according to the most common value of the class attribute, return.

The Proposed DID Algorithm

Function Search. Given set α_{σ}^{i} and the attributes partitions $\alpha_{1}, \alpha_{2}, ..., \alpha_{n}; E_{**}^{:}F$;

- 1. Init current partition α_c by α_c^i ; init $E_c \leftarrow E$; $F_c \leftarrow F$
- Normalize probabilities of the elements of αⁱ_c.
- 3. Create local class partition $\alpha_{Y}|_{\alpha_{c}}$.

4. Generate neighborhood partitions:

 $N(\alpha_c) = \{\alpha_j |_{\alpha_c}\}, j \in F_c, F_c = \{j : A_j \text{ not selected by the algorithm yet}\}$

- 5. Normalize probabilities of neighbors and of the class partition;
- 6. Obtain distance measures by $d_1(\alpha_c, \alpha_j|_{\alpha_c})$ and $d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c})$, $j \in F_c$

 Choose next partition: The next partition is selected as follows (ties are resolved arbitrary):

 $\alpha_{next} \leftarrow \arg \min_{\alpha_j \in N(\alpha_c)} \{ w_1 d_1(\alpha_c, \alpha_j|_{\alpha_c}) + w_2 d_2(\alpha_j|_{\alpha_c}, \alpha_Y|_{\alpha_c}) \} \square$

10. For each sub-partition $\alpha_c^i \in \alpha_c$ such that i) $|\alpha_c^i| > 1$; ii) $\alpha_Y|_{\alpha_c^i}$ is not yet

classified; and iii) F_c is not empty

start the **Search** procedure (for sub-partition α_c^i , $F_{c*}E_c$)

If $\alpha_{Y}|_{\alpha_{c}}$ is classified, return.

If $|\alpha_c| = 1$ classify according to the instance's class value, return.

If $F_c = \{\emptyset\}$ classify according to the most common value of the class attribute,

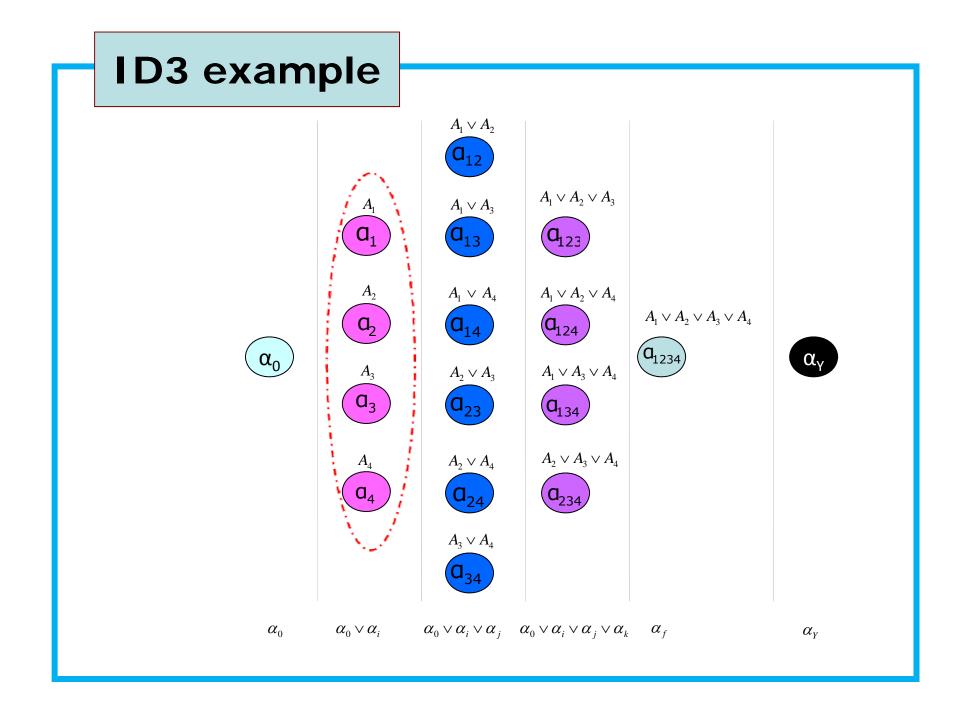
Outline

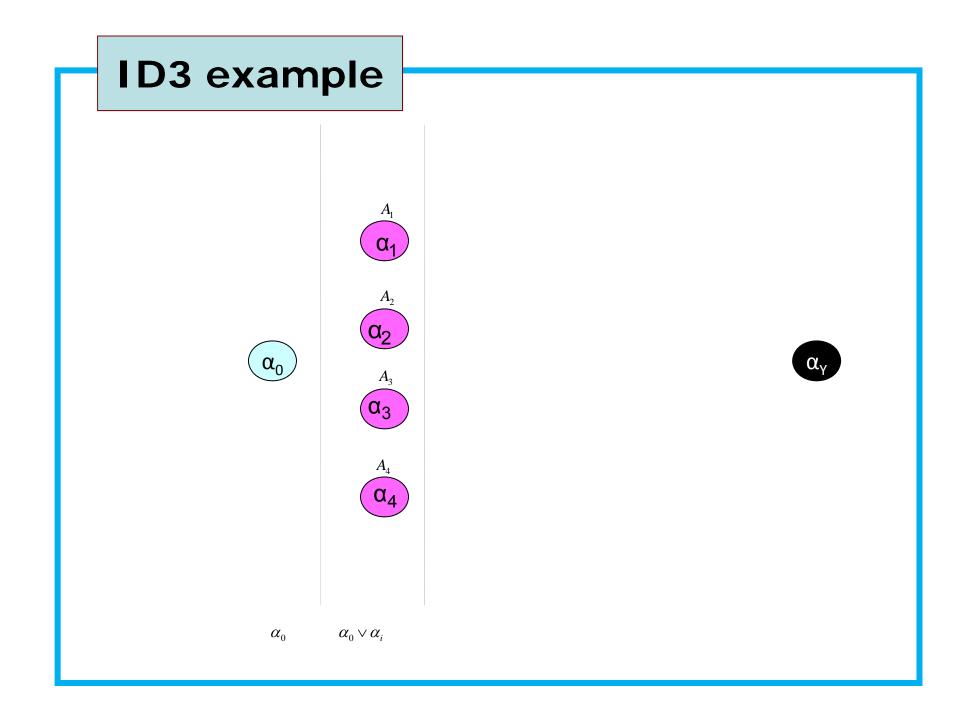
- 1. Introduction & Motivation
- 2. Proposed Partitions Approach
- 3. Examples
- 4. Results
- 5. Mid-level solutions
- 6. Summary & Contribution

Example

Training Data Set

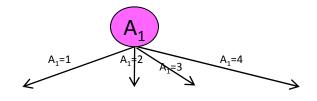
	Y	A1	A2	A3	A4
1	1	4	1	1	1
2	2	1	1	2	2
3	2	1	1	2	1
4	2	1	1	2	1
5	3	2	3	2	1
6	3	2	2	1	1
7	4	2	3	1	1
8	4	3	3	1	1
9	5	3	3	3	1
10	4	1	1	3	1
11	4	1	2	4	2
12	4	2	2	4	2

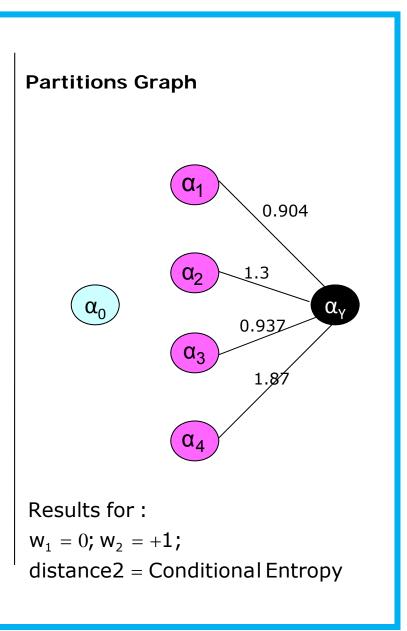


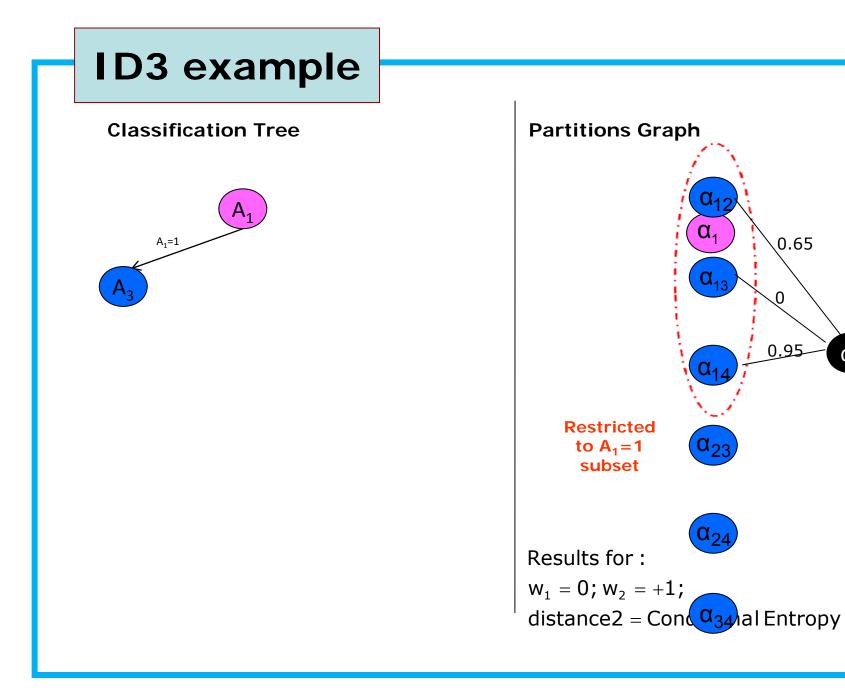


ID3 example

Classification Tree

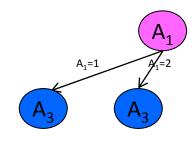


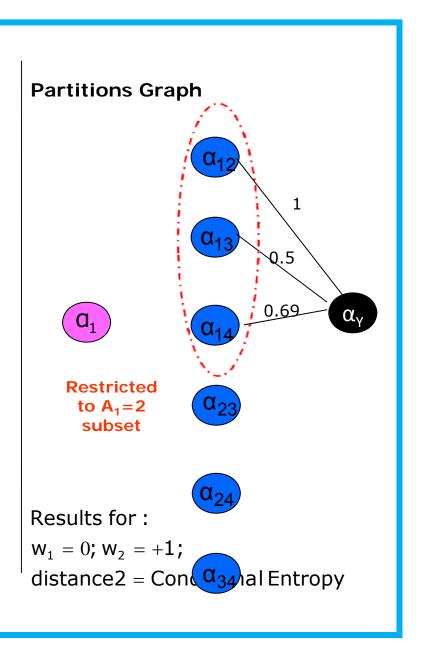


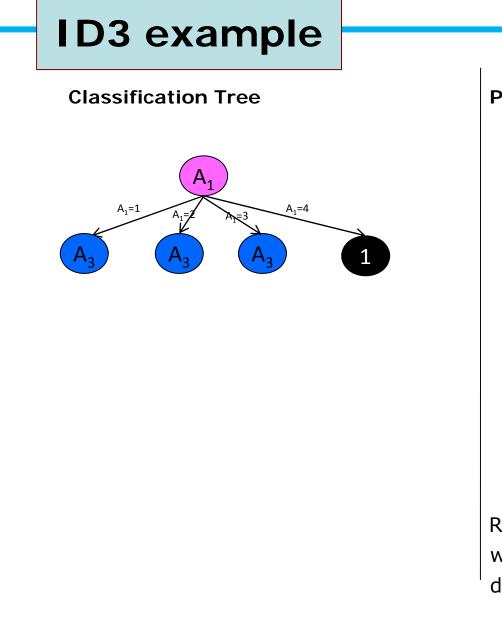


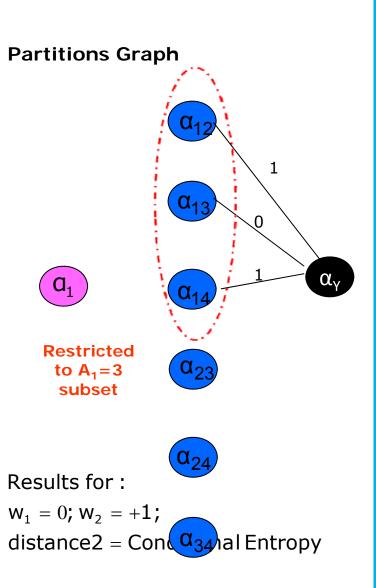
 $\alpha_{\rm Y}$

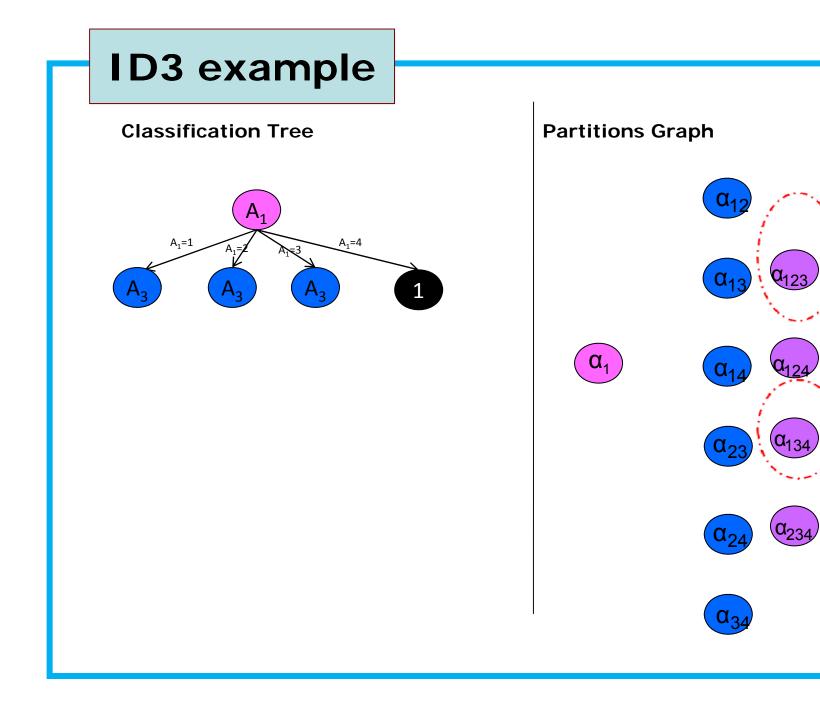
Classification Tree





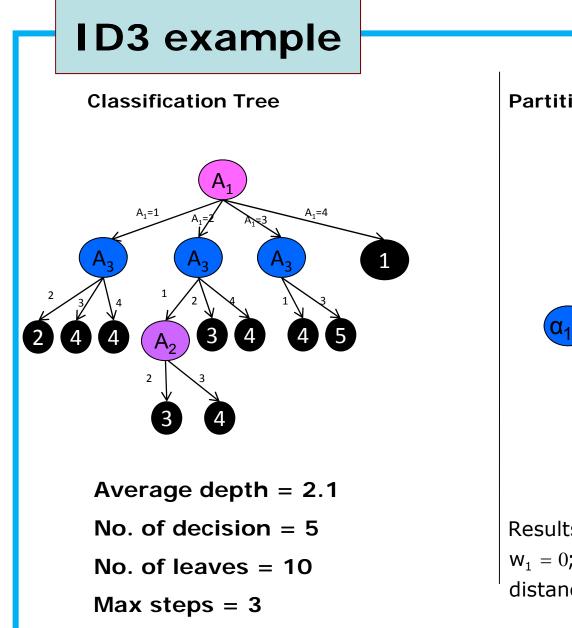


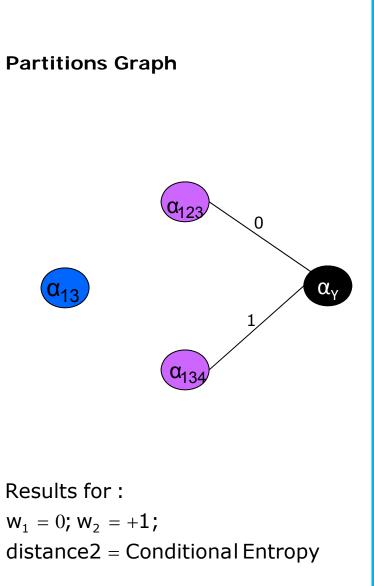


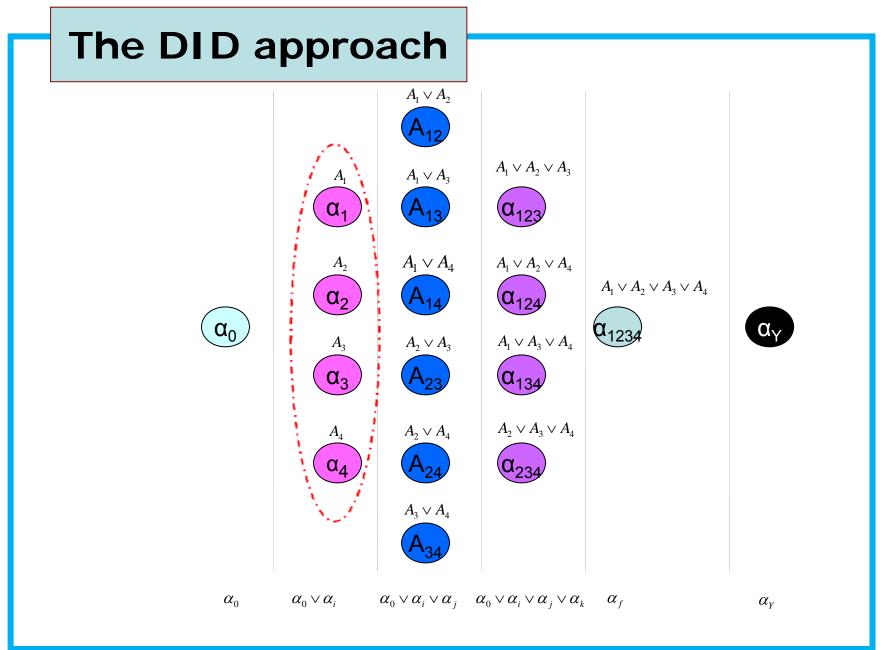


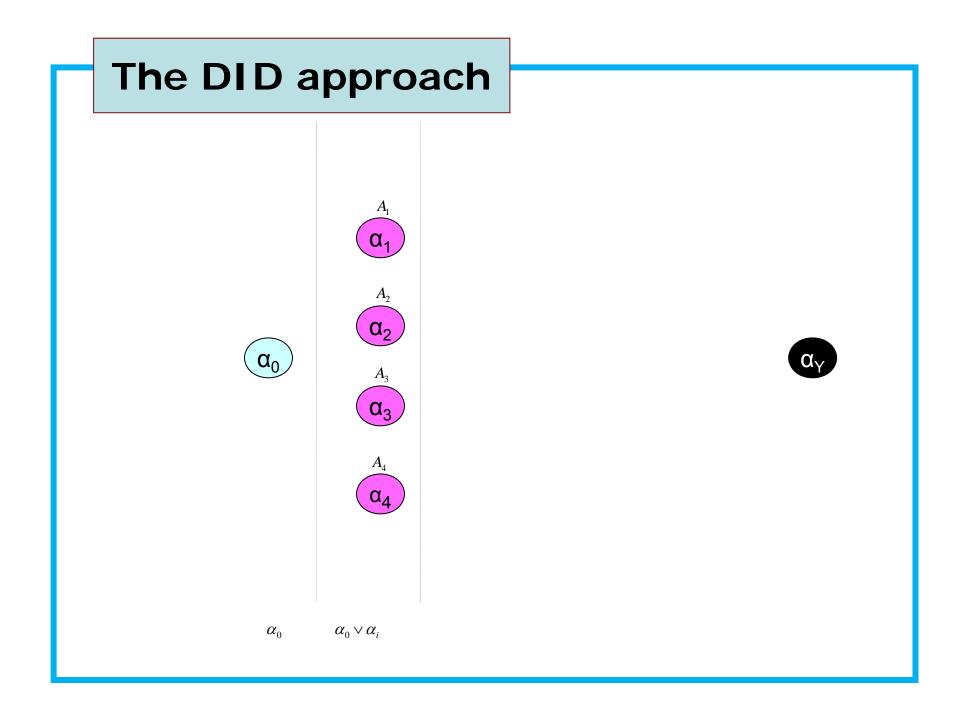
 $\alpha_{\rm Y}$

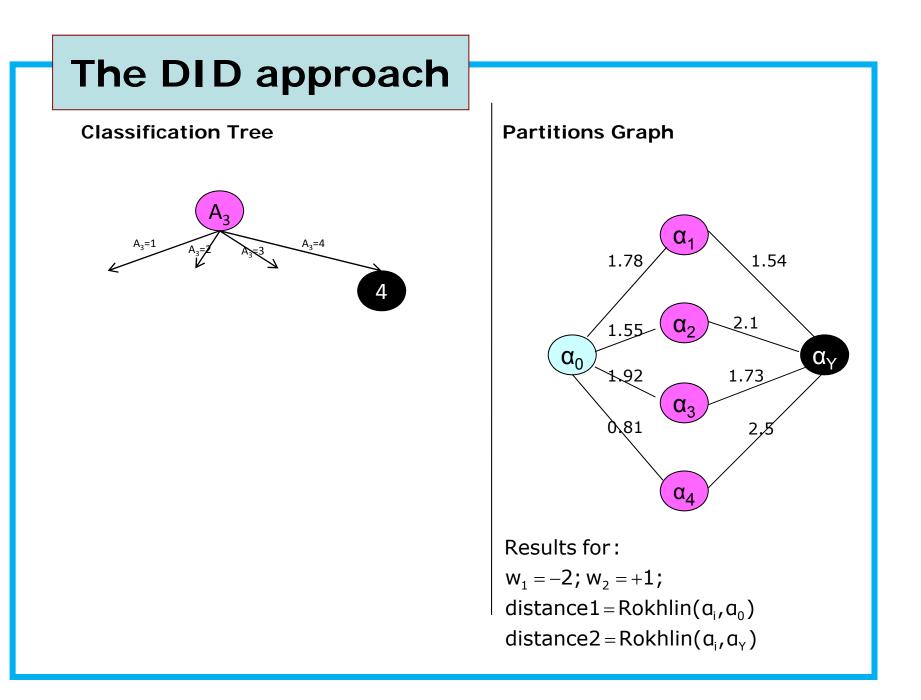
α₁₂₃₄

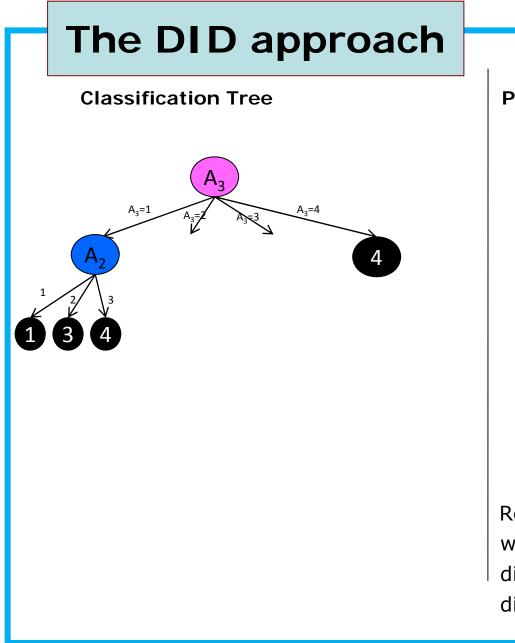


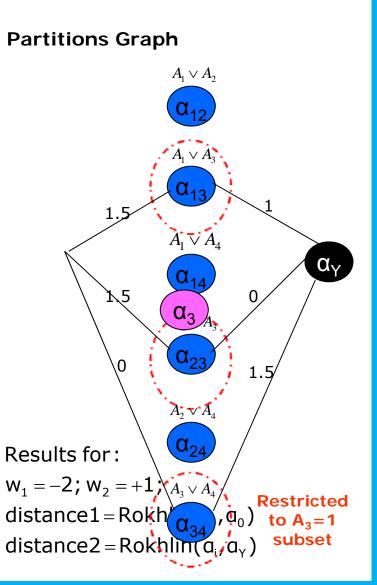


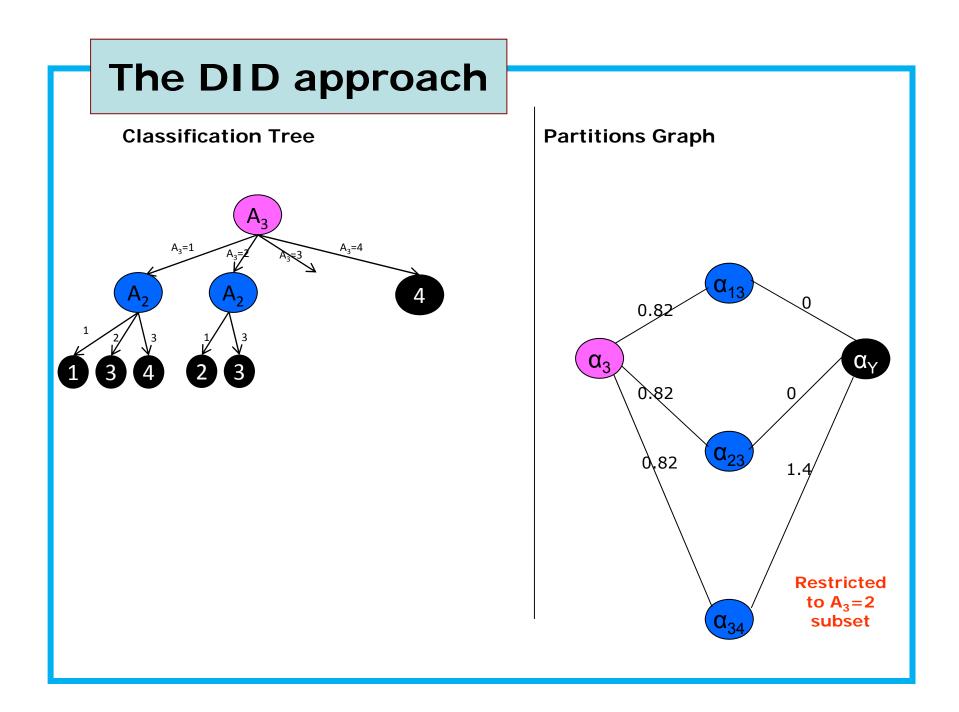


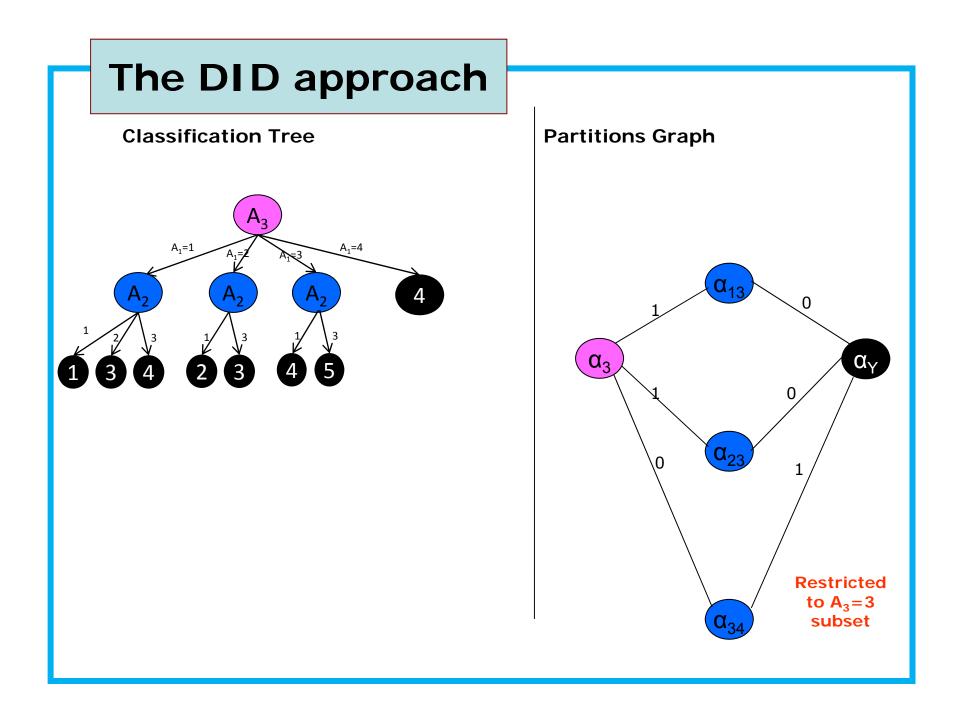


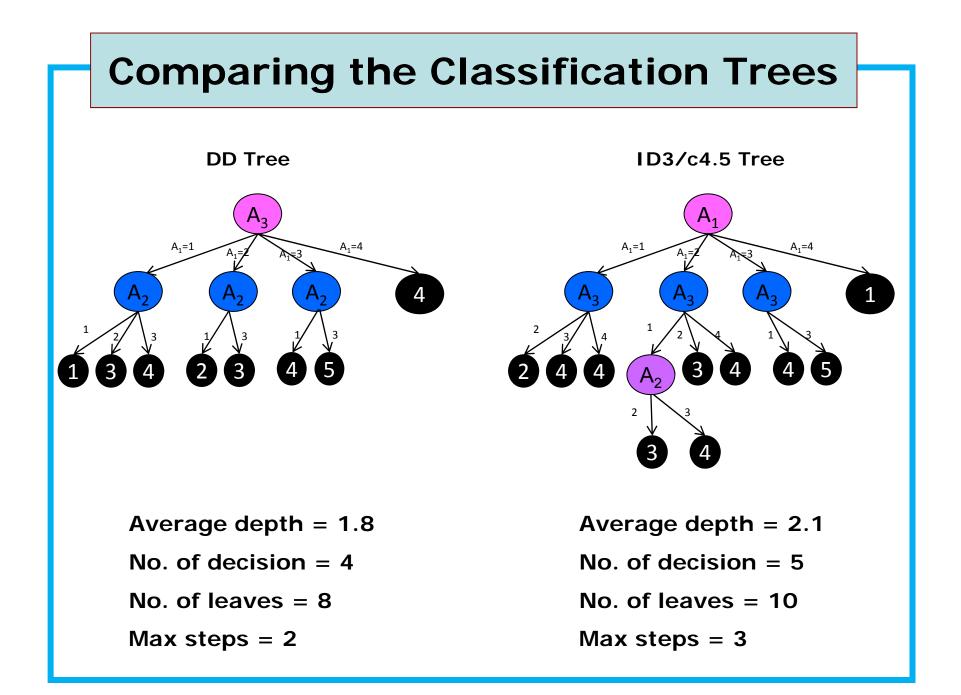












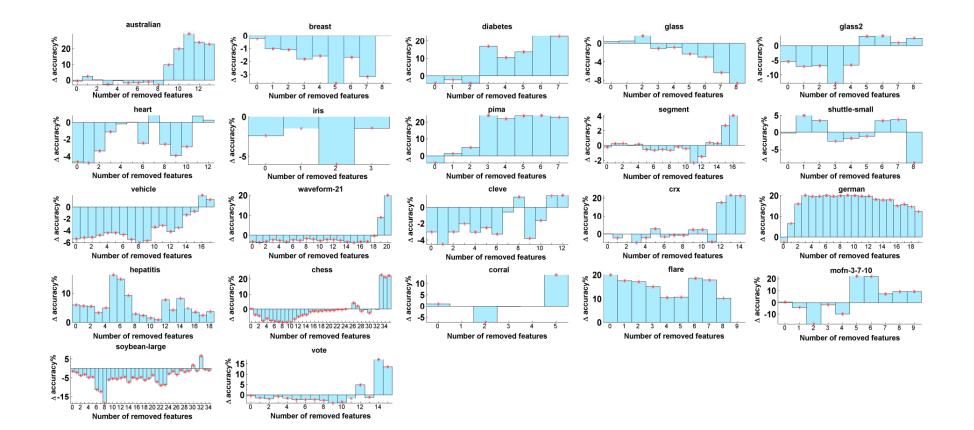
Some Results

Summarizing Comparison between ID3, C4.5 and DID decision trees

Dataset	Size		ID3		C4.5		DID	
	#instances	#Attributes	Average Depth	Accuracy	Average Depth	Accuracy	Average Depth	Accuracy
Monk's-1	124	6	3.21	82%	3.32	82%	2.66	96.%
Monk's-2	169	6	4.34	70.4%	4.6	75%	4.2	66%
Monk's full Random set	216	6	1.93	100%	2.04	100%	1.8	100%
Connect4	67,557	42	5.85	73.8%	10.16	79.4%	5.64	75%
SPECT Heart	80	22	9.6	75.1%	10.2	80.3%	9.3	76%
Voting	435	16	1.8	96%	2.2	96.6%	2.1	96%
Balance Scale	625	4	3.4	76.3%	3.4	78.6%	3.3	76.6%
Cars	1728	6	2.82	77.1%	2.83	77%	2.77	78.5%
Tic-Tac-Toe	958	9	4.62	80.6%	4.62	80.4%	4.6	76.2%
Soy Beans	47	35	1.35	100%	2.37	97%	1.32	97%
Lymphography	148	18	2.71	75.1%	6.51	77.3%	2.6	72.6%

Case	#features	SVM accuracy%	J48 %	DID accuracy %
australian	14	55.5	86.2	86.9
breast	9	96.5	93.6	93.5
diabetes	8	65.1	74.2	72.6
glass	8	69.16	50.1	51.8
glass2	8	76.68	75.3	82.1
heart	13	55.93	79.4	79.5
iris	4	96.67	94.4	95.6
pima	36	65.1	73.1	72.2
segment	18	63.9	94.1	93.6
Shuttle- small	9	89.41	62	61.9
vehicle	18	30.5	69.7	65.2
waveform-21	21	86.1	76.3	73.5
cleve	13	54.73	78.9	78
crx	15	65.67	87.5	87.6
german	20	70	65.2	66.6
hepatitis	19	83.55	57.4	64.2
chess	36	93.83	99.3	99.8
corral	6	96.89	98.1	98.3
flare	9	82.37	61.2	68.9
mofn-3-7-10	10	100	100	100
soybean- large	35	87.19	95.8	94.2
vote	15	95.35	94.7	95.4

Accuracy of C4.5 (J48) and DID as a function of the number of removed features for different cases taken from the UCI Repository



Outline

- 1. Introduction & Motivation
- 2. Our Partitions Approach
- 3. Example
- 4. Results
- 5. Mid-level solutions
- 6. Summary & Contribution

Summary & Contribution

Modeling the tree construction problem as a shortest path problem over a graph of partitions as nodes.

 A <u>unified framework</u> for existing DT algorithms
 Further Generalization <u>via different metrics</u>, e.g, Rokhlin, Entropy, etc. supported by IT
 Orthogonally vs. Information Gain
 Big Data fit: Shorter trees with smaller decisions for online scoring and recommendation Thank you ! Questions?