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Introduction

________________________________________________________________________________________________________________________

“In classification, there is a target categorical
variable, which is partitioned into
predetermined classes or categories. The data
mining model examine a large set of records,
each record containing information on the
target variable as well as a set of input or
predictor variables”. (Larose, 2005).



Introduction

________________________________________________________________________________________________________________________

A Classification variables
= (Class/Target variable Y
= Attributes set {AA,,..., A}

O The tree partitions Y by selecting attributes A;, aiming that
each leaf will contain a single class of Y

d Performance measures
= Minimizing the classification error-rates

= Minimizing the average depth of the tree
= Minimizing the number of nodes/leaves
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ID3 Decision Tree example

e 4 categorical attributes A4, ....,A,

e Each selection splits the set into
two or more partitions
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Introduction

________________________________________________________________________________________________________________________

Optimal Decision Trees

A Consider all possible splits (all combinations)
d Construction is NP-hard (Hackock et al., 1996)
Heuristic Trees

d Greedy trees (ID3, C4.5, CART)
e At each step consider only the next split
d Look-ahead trees

e consider up-coming splits (usually 2-steps ahead)

e Computationally “pricy”: O(mnX) for n variables; m
records, and a K-steps look-ahead procedure
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Introduction

________________________________________________________________________________________________________________________

Heuristic Trees

Can we do better than greedy selection without
extensive computations?

Maybe: e.g. by using the Dual Information
Distance (DID) approach on a ‘partitions graph’

-11-



Introduction

________________________________________________________________________________________________________________________________________________________________

d Recursively split each node until no splits are possible
d ID3 Splitting Criteria: (highest) Information Gain

Information Gain(Y;Ai)=H(Y)-H(Y | Ai)

[ C4.5 Splitting Criteria: (highest) Gain Ratio

Informatio n Gain (Y; Ai)
Enropy(Ai)

Gain Ratio(Y; Ai) =

d Max information gain/Reduction of entropy (uncertainty)!

A Very popular & produces good results in practice problems
(Goodman & Smyth, 1988; Murthy & Salzberg, 1995) 4

-12-
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Information Theory

___________________________________________________________________________________________________________________________________________________

For two attributes, A, A, :
HALASY) = TASY) + T(ASY]A) =
H(A)+H(AJA)-H(A]Y)-H(AJA,Y)

In General :
L(ALA,AGY) =D TAGYIAL LA =
> HAALA) = HAALALY)

Max Orthogonality (DOE) Minimize Entropy /
Remaining uncertainty (DM)

-14-



Information Theory

___________________________________________________________________________________________________________________________________________________

In General :
I(A1aA2,---,An;Y)= ZII(AI,Y | Ai-1,""A1):
ZiH(Ai |Ai-1,""A12_ZiI:I(Ai |Ai-1,---,A1,Y2

Max Orthoggnality (DOE) Minimize Entr\c;py /
Remaining uncertainty (DM)

Use a Dual Information Distance approach, wrt:

1.Current state / partition a.=A,vA,...A
2.Target variable

-15-



The DID Partition Approach

________________________________________________________________________________________________________________________

d When selecting attribute A; examine the resulting
partition with respect to dual Inf. distance:
v Current partition (current tree state)

v Target/class partition

Maximize Minimize
O, ——— & --"--——"

|

Orthogonality Remaining Uncertainty
(DOE approach) (DM approach)

-16-



LRTA* Algorithm

dist;(sqg,s

disty (So, 52) Q ‘ -

dist,(S,,Sy)
dist{(Sg,Sp)
(Korf, 1990)

Applying LRTA* concepts to Decision-Tree Construction
State s; & partition a;

Neighbors of state s; «+» Refinement of partition o; (add an attribute)
Distance d(s;,sj) <> A distance metric defined over partitions

-17-



The DID Approach

Rokhlin(a, f) = H(«|f) + H(B|a)

O This distance follows the required properties of a metric:

d{a,f) =2 0
dla, ) =0
da,f) = da,y) + dCy, f). va, B, vex

0 Relation between mutual information and Rokhlin metric

d:(ﬂr:ﬁ} = H(ﬁ:ﬁ} - I(ﬁ:ﬁ)

-18-



The DID Approach

A general objective function
n&in{wl dy (a, a; )+ wydy (a;, ay)
d; denotes the orthogonality measure distance between the
current partition and the next chosen partition
d, denotes the information (or remaining uncertainty) distance

between the chosen partition and the class partition

Maximize Minimize
—(a, a o
We > 0

Orthogonality Remaining Uncertainty
(DOE approach) (DM approach)

Korf, 1990
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The DID Approach

A general objective function
n&in{wl dy (a, a; )+ wydy (a;, ay)
d; denotes the orthogonality measure distance between the
current partition and the next chosen partition
d, denotes the information (or remaining uncertainty) distance

between the chosen partition and the class partition

Maximize Minimize
—(a, a o
We > 0

Rokhlin -> Rokhlin
Conditional Entropy

Korf, 1990
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The DID Approach

O Let us consider the following example:
Q For A, partition A5 is most orthogonal

H(A, |A,)=0.63 H(A, |A,)=1.24

A, A, A, Y
1 1 1 2
1 1 2 2
1 1 2 2
1 2 2 3
1 2 2 3
1 2 2 3
2 2 1 1
2 2 1 1
2 2 1 1
2 2 2 1
2 2 2 1
2 2 2 1
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The DID Approach

O Let us consider the following example:
d A; and A5 are most orthogonal,
however they do not classify Y

A, A, A, Y
1 1 1 2
1 1 2 2
1 1 2 2
1 2 2 3
1 2 2 3
1 2 2 3
2 2 1 1
2 2 1 1
2 2 1 1
2 2 2 1
2 2 2 1
2 2 2 1
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The DID Approach

Q
Q

Q

Let us consider the following example:
A; and A; are most orthogonal,
however they do not classify Y
Focusing on the orthogonality between
the restricted partitions:

For A, =1: A, is most orthogonal

For A; =2: A5 is most orthogonal but
this sub-set is already classified by A,

A, A, A, Y
1 1 1 2
1 1 2 2
1 1 2 2
1 2 2 3
1 2 2 3
1 2 2 3
2 2 1 1
2 2 1 1
2 2 1 1
2 2 2 1
2 2 2 1
2 2 2 1
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The DID Approach

U O

0 U

Let us consider the following example:
A; and A; are most orthogonal,
however they do not classify Y
Focusing on the orthogonality between
the restricted partitions:

For A, =1: A, is most orthogonal

For A; =2: A5 is most orthogonal but
this sub-set is already classified by A,
Full classification of Y is achieved

The DM “Preprocess Approach” is not
always helpful!

A, A, A, Y
1 1 1 2
1 1 2 2
1 1 2 2
1 2 2 3
1 2 2 3
1 2 2 3
2 2 1 1
2 2 1 1
2 2 1 1
2 2 2 1
2 2 2 1
2 2 2 1

-24-



The DID Approach

0 The Rokhlin distance measure takes into | A, | a,

account two terms:

H(¥Y|4;) H(A4;[Y)

OO |0 | X |X|X |




The DID Approach

0 The Rokhlin distance measure takes into | A, | a,

Y
account two terms: 1 1 X
H(Y|4;) H(A4;|Y) 2 1 X

3 1 X
H(Y|4,) =0Q . 5 5
H(Y|4,) =0 . , 5

6 2 0




The DID Approach

0 The Rokhlin distance measure takes into | A, | a, v
account two terms: 1 1 X
HY|[4;) H(4;[Y) 2 1 | X

3 1 X
H(Y|4,) =0 A , o
H(Y|4,)=0 - , o
H({4,]Y) = 1.58 6 2 | o
H(4,;|Y) =0
3 )
QO Prefer A, over A, {a3, a3}

d Partition the dataset “as little” as required

-27-



The DID Approach

U 0O 0O 0 O

________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________

G - The “initial partition”: {{X}{J}}

oy - The “class/target partition”

@, - current partition (current state of the tree)

q - the partition that results from the selection of attribute i

« - sub-partition of @« where the levels of attribute i are equal
toj a ={aflaj ca,al naf = Eﬁ,\Uﬂf = ;)

Selecting an attribute in a node may regults in a refinement of the current

partition, i.e., Q,va;is arefinement of q,

ava= {ﬂf ﬂﬂf“ =12, |l k=12, .., |ﬂ}'|.}

-28-



The DID Approach

.............................................................................................................................

d Look for a partition that results in maximum information
(minimum classification uncertainty)

d Using Entropy: choosing the partition i which gives
minimum H(a, |a)

d Using Rokhlin: choosing the partition i which gives

minimum  R(a,,a)=H(a,

~\ LI~ ~
Ui )= 1y )

Minimizing the staying ‘“as close as
classification possible” to a, avoiding
uncertainty unnecessary refinement



The Proposed DID Algorithm

Algorithm (DID)

Given 1) set of weights w,,w,: ii) two distance metrics denoted by d; and d,:

iii) arrributes partitions @, @, ..., &, ; and iv) a class partition ay

Deo:

Init current partition . < @,

Init E = {0},F = {1,2,...,n} <groups of the “used” and the “unused” attributes =
For each sub-partition alea, such that 1&|ac| > 1 i) dty| i 15 not yet

classified; and iii) F is not empty

start the Search procedure (for the sub-partition al)

-30-



The Proposed DID Algorithm

Algorithm (DID)

Given 1) set of weights w,,w,: ii) two distance metrics denoted by d; and d,:

iii) arrributes partitions @, @, ..., &, ; and iv) a class partition ay

Do:

Init current partition . < @,

Init E = {0},F = {1,2,...,n} <groups of the “used” and the “unused” attributes =

For each sub-partition alea, such that 1&|ac| > 1 i) ay| i is not yet
. . {

classified; and iii) F is not empty

start the Search procedure (for the sub-partition al)
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The Proposed DID Algorithm

Algorithm (DID)

Given 1) set of weights w,,w,: ii) two distance metrics denoted by d; and d,:

iii) arrributes partitions @, @, ..., &, ; and iv) a class partition ay
Do:
Init current partition . < @,

Init E = {0},F = {1,2,...,n} <groups of the “used” and the “unused” attributes =

For each sub-partition alea, such that 1&|ac| > 1 i) ay| i is not yet
. . {

classified; and iii) F is not empty

start the Search procedure (for the sub-partition al)
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The Proposed DID Algorithm

Function Search. Given set a. and the attributes partitions oy, 04, ..., @, E; F:

Init current partition a, by al; mit E, « E; F, « F
Normalize probabilities of the elements of ..
Create local class partition ay|, .
Generate neighborhood partitions:
N(a.) = Jicl'.j |G.l_},_}EFG, F, = {j: A, not selected by the algorithm yet}
Novmalize probabilities of neighbors and af the class partition;
Obtain distance measures by dy( e, o] ﬂ'rj' and dy (e, oyl ), j€F,
Choose next partition: The next partition is selected as follows (ties are
resolved arbitrarv):

e <_ aTgm"'nu_;-E.'-:":c‘r," {w‘l d‘l [.ﬂ:ci C"'j |G’,_-} T Wy dﬂ [ j |r:t‘rJ a&'lﬁ‘r}}
Update E_ and F_ (move j from F_to E_)

Move to next partition: a_ < a

next

. For each sub-partition a_ea, such that i) |crc| = L) ay| i s noty

classified; and iii) F. is not empty
start the Search procedure (for sub-partition a®, F,_E_)
If crylﬂ,l_ is classified, return,
If la.| =1 classify according to the instance’s class value, retun.
If F,={0} classify according to the most common value of the class atribute,

rerurr

-33-



The Proposed DID Algorithm

e

urrent partition a, oy a_,;, mit E, < E; F, « F
Normalize probabilities of the elements of a’
Create local class partition -:r},|

Generate neighborhood *':;rr..L.GJ 15

N(a, )= {I:r.jln,r},jEFc,Fc = {j: A, not selected by the algorithm yet]

Normalize probabilities of neighbors and of the class partition;

resolved arbitrarv):
e <_ aTgm":nu_;-E.'-:":c‘r," {w‘l d‘l [.ﬂ:ci C"'j |G’,_-} Wi d" [ _| |cr 2 Oy ||:‘ }}
Update E_ and F_ (move j from F_to E_)

T+ 7 + ¥ +1F7
Move to next partition: a ¢ Cpese

10. For each sub-partition a,ea,_ such that i) |crc| = 1;ii) “Yluf. is mot yer

classified; and iii) F. is not empty
start the Search procedure (for sub-partition a®, F,_E_)
If crj,lﬂ, is classified, return,
If la.| =1 classify according to the instance’s class value, retun.
If F,={0} classify according to the most common value of the class atribute,

rerurr
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The Proposed DID Algorithm

Function Search. Given set a. and the attributes partitions oy, 04, ..., @, E; F:

1. Init current partition a, by a.; mit E, « E; F, « F
Normalize probabilities aof the elements of ar.
T < S e
Create local class partition ay|, .

Generate neighborhood partitions:

N(g V=1{gl| VieF F = £ A potselected bvihe alogrithm vetl

Obtain distance measures by dy(a_, o, |E,r} and dy (o4, tylq. ). j€F,
Choose next partition: The next partition is selected as follows (ties are

resolved arbitrary):

T e {_ ELTgmiﬂg;E.‘-;":n*l—," {W‘l -'.'1[1 [:':Ici 'D"j |r::l-} T W 'ﬂ[i [ i |Et',_--' 'j"i'll::l-}}

Uoddie O, didl B, (FROVeE | (FORT D, 10 G

Move to next partition. a_ ol S
. For each sub-partition a_ea, such that i) |crc| = 1 ii) ay| g s noty
(=
classified; and iii) F. is not empty

start the Search procedure (for sub-partition a', F._E_)
If crylﬂ,l_ is classified, return,
If la.| =1 classify according to the instance’s class value, retun.
If F,={0} classify according to the most common value of the class atribute,

rerurr
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The Proposed DID Algorithm

Function Search. Given set a. and the attributes partitions oy, 04, ..., @, E; F:

Init current partition a, by al; mit E, « E; F, « F

Normalize probabilities of the elements of ..

Create local class partition ay|, .

Generate neighborhood partitions:

N(a.) = {U'jlcr}i.}IEFcJFc = {j: A, not selected by the algorithm yet]
Novmalize probabilities of neighbors and af the class partition;
Obtain distance measures by dy( e, o] ﬂ'rj' and dy (e, oyl ), j€F,

Choose next partition: The next partition is selected as follows (ties are

resolved arbitrarv):

)}t

Update E_ and F_ (move J from F.to E_)

Move to next par

10. For each sub-partition alea_ such th
classified; and iii) F. is not empty
start the Search procedure (for sub-partition a®, F,_E_)
If crylﬂ,l_ is classified, return,
If la.| =1 classify according to the instance’s class value, retun.
If F,={0} classify according to the most common value of the class atribute,

rerurr
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The Proposed DID Algorithm

2 S S

Function Search. Given set a’ and the attributes partitions a,,a,, ...

Init current partition a, by al; mit E, « E; F, « F
Normalize probabilities of the elements of ..
Create local class partition ay|, .
Generate neighborhood partitions:
N(a.) = {Ef.jla.r},_}EFc,Fc = {j: A, not selected by the algorithm yet]
Novmalize probabilities of neighbors and af the class partition;
Obtain distance measures by dy( e, o] ﬂ'rj' and dy (e, oyl ), j€F,
Choose next partition: The next partition is selected as follows (ties are
resolved arbitrarv):

Crext <_ aTgm":nu_;-E.'-:":c‘r," {w‘l d‘l [:ﬂ:ci C"'j |G’,_-} ™ Wy dﬂ [ i |r:t‘rJ a&'lﬁ‘r}}

For each sub-partition a_ea_ such that i |-:'IE| = 1@ -:'I}.-|E,':'_ is not vet

classified; and iii) F_ is not empty

start the Search procedure (for sub-partition a_. F._E_)

If ayl,_is classified, return.

If la_| = 1 classify according to the instance’s class value, refurn.

If F, = {0} classify according to the most common value of the class attribute,

FETLIFTL
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Example

Training Data Set

|||||||||||||

A4

A3

A2

A1

10
11

12
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ID3 example
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ID3 example

Classification Tree

Partitions Graph

Results for :
w, =0, w, =+1;
distance2 = Conditional Entropy



ID3 example

Classification Tree

Partitions Graph

Restricted
to A,=1
subset

distance2 = Con.al Entropy

Results for :
w, =0;w, =+1;



ID3 example

Classification Tree

Partitions Graph

Restricted
to A,=2
subset

distance2 = Con‘al Entropy

Results for :
w, =0, w, =+1;



ID3 example

Classification Tree

Partitions Graph

Restricted
to A,=3
subset

distance2 = Con‘al Entropy

Results for :
w, =0, w, =+1;



ID3 example

Classification Tree

Partitions Graph




ID3 example

Classification Tree

Average depth = 2.1

No. of decision =5
No. of leaves = 10

Max steps = 3

Partitions Graph

Results for :
w, =0, w, =+1;
distance2 = Conditional Entropy



The DID approach

AV A,

ayvava;va, o



The DID approach




The DID approach

Classification Tree

Partitions Graph

Results for:

W, ==2; W, =+1;
distancel=Rokhlin(a,,a,)
distance2 =Rokhlin(a;,a,)



The DID approach

Classification Tree

Partitions Graph

W, ==2; W, =+1 XA\ /
distancel =Rok

Restricted
to Az=1




The DID approach

Classification Tree

Partitions Graph

Restricted

to Az=2
subset



The DID approach

Classification Tree

Partitions Graph

Restricted

to A;=3
subset



Comparing the Classification Trees

DD Tree ID3/c4.5 Tree

Average depth = 1.8 Average depth = 2.1
No. of decision = 4 No. of decision =5
No. of leaves = 8 No. of leaves = 10

Max steps = 2 Max steps = 3




Some Results



Summarizing Comparison between ID3, C4.5 and
sion

DID decision trees
Dataset Size ID3 C4.5 DID
#instances  #Attributes AElE Accurac AUEIELE Accurac AElE Accurac
Depth y Depth y Depth y
Monk's-1 124 6 3.21 82% 3.32 82% 2.66 96.%
Monk's-2 169 6 4.34 70.4% 4.6 75% 4.2 66%
Monk's full 216 6 1.93 100% 2.04 100% 1.8 100%
Random set ) 0 ’ 0 ’ 0
Connect4 67,557 42 5.85 73.8% 10.16 79.4% 5.64 75%
SPECT Heart 80 22 9.6 75.1% 10.2 80.3% 9.3 76%
Voting 435 16 1.8 96% 2.2 96.6% 2.1 96%
Balance Scale 625 4 3.4 76.3% 3.4 78.6% 3.3 76.6%
Cars 1728 6 2.82 77.1% 2.83 77% 2.77 78.5%
Tic-Tac-Toe 958 9 4.62 80.6% 4.62 80.4% 4.6 76.2%
Soy Beans 47 35 1.35 100% 2.37 97% 1.32 97%

Lymphography 148 18 2.71 75.1% 6.51 77.3% 2.6 72.6%



Case

australian
breast

diabetes
glass
glass2

heart

iris

pima
segment
Shuttle-

small
vehicle

waveform-21

cleve
Crx

german
hepatitis
chess

corral
flare

mofn-3-7-10

soybean-
large
vote

t#features

18
21
13
15

20
19
36

10
35

15

SVM
accuracy%
55.5

96.5

65.1
69.16
76.68

55.93
96.67
65.1

63.9
89.41

30.5

86.1
54.73
65.67

70
83.55
93.83

96.89
82.37

100
87.19

95.35

J48 %

86.2
93.6

74.2
50.1
75.3

79.4
94.4
73.1

94.1
62

69.7

76.3
78.9

87.5

65.2
57.4
99.3

98.1
61.2

100
95.8

94.7

DID accuracy
%
86.9

93.5

72.6
51.8
82.1

79.5
95.6
12.2

93.6
61.9

65.2
73.5
78
87.6

66.6
64.2
99.8

98.3
68.9

100
94.2

95.4
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. Introduction & Motivation
. Our Partitions Approach

. Example

. Results

. Mid-level solutions

. Summary & Contribution



Modeling the tree construction problem as
a shortest path problem over a graph of

partitions as nodes.

d A unified framework for existing DT algorithms

A Further Generalization via different metrics, e.q,

P B B

py, etc. supported by IT

A Orthogonally vs. Information Gain

d Big Data fit: Shorter trees with smaller decisions
for online scoring and recommendation




Thank you !
Questions?



