Measuring a causal effect on a network

Antoine Chambaz

Modal'X (Université Paris-Ouest Nanterre)

April 11th, 2014

2014 ENBIS-SFdS Spring Meeting

Graphical causality models: trees, Bayesian networks and big data

A. Chambaz (Modal'X)

Networks and causality

Setting:

- each observation is a network with a context
- observations are i.i.d.
- an underlying causal model is at play

Conceptual examples:

- type A or type B breast cancer
 - each woman has her personal history and characteristics
 - a genomic study of sample tissues yields a gene-interaction network
 - → what is the "effect" of type on network?
- randomized trial of low-calory diet in obese women
 - each woman has her personal history and characteristics
 - one flips a coin to assign either low-calory diet or pseudo-diet
 - after a few months, a genomic study of blood samples yields a gene-interaction network
 what is the "effect" of diet on network?
- many more... (possibly with continuous "actions")

Introduction

Formalization

Nested settings:

- statistical model: $O^1, \ldots, O^n \stackrel{\text{iid}}{\sim} P_0 \in \mathcal{M}$
 - O = (W, A, Y): context W, action A, binary network Y (fixed set of G edges)
- causal model: $X = (W, A, Y_0, Y_1) \sim \mathbb{P}_0 \in \mathbb{M}$
 - (Y_0, Y_1, A) mutually conditionally independent given W
 - defining $Y \equiv Y_A$ yields $O = (W, A, Y) \sim P_0$
 - $\rightarrow P_0$ is a deterministic function of \mathbb{P}_0

Parameters:

• causal parameter: say $\Phi : \mathbb{M} \to [0; 1]$,

$$\Phi(\mathbb{P}) = E_{\mathbb{P}}\{\|Y_1 - Y_0\|^2\}$$

- notation: $\langle u,v\rangle=\frac{1}{G(G-1)}\sum_{1\leq k< l\leq G}u_{kl}v_{kl},\,\|u\|^2=\langle u,u\rangle$

• associated statistical parameter: $\Psi : \mathcal{M} \to [0; 1]$,

 $\Psi(P) = E_P\{\langle \theta_P(1, W) + \theta_P(0, W) - 2\theta_P(1, W)\theta_P(0, W), \mathbf{1} \rangle\}$

- notation: $\theta_P(A, W) = E_P(Y|A, W), g_P(W) = P(A = 1|W)$

identifiability: $\Psi(P_0) = \Phi(\mathbb{P}_0)!$

A. Chambaz (Modal'X)

Analysis of Ψ

 Ψ is pathwise-differentiable at every $P\in \mathcal{M}$ wrt $L^2_0(P)$

its efficient influence curve satisfies $\nabla_P \Psi(O) = \langle \overrightarrow{\nabla_P \Psi}(O), 1 \rangle$, where

$$\begin{split} \overline{\nabla_{P}\Psi}(O) &= & \left[\theta_{P}(1,W) + \theta_{P}(0,W) - 2\theta_{P}(1,W) * \theta_{P}(0,W) - \Psi(P)\right] \\ &+ \frac{A}{g_{P}(W)}(Y - \theta_{P}(1,W)) * (1 - 2\theta_{P}(0,W)) \\ &+ \frac{1 - A}{1 - g_{P}(W)}(Y - \theta_{P}(0,W)) * (1 - 2\theta_{P}(1,W)) \end{split}$$

 $\nabla_P \Psi$ conveys crucial information on Ψ , e.g.

- Cramér-Rao bound:

 $\operatorname{Var}_{P}(\nabla_{P}\Psi(O))$ is the smallest asymptotic variance of a regular estimator of $\Psi(P)$ under P

- robustness:

if $E_P\{\nabla_{P'}\Psi(O)\}=0$ and either $g_P=g_{P'}$ or $\theta_P=\theta_{P'}$ then $\Psi(P')=\Psi(P)$

 $\nabla_P \Psi$ can drive the elaboration of a targeted SP inference procedure

Targeted SP inference procedure

Targeted minimum loss estimation (TMLE):

- coined by van der Laan and Rubin [2006] studied, refined/applied in/to many different settings and problems [van der Laan & Rose, 2011]
- SP-based methodology parenthood with estimating equations methodology, Huber one-step inference huge body of literature [Robins, 1980-...; Bickel et al., 1993; van der Vaart, 1998]

Roadmap:

- 1. initialization:
 - estimate θ_{P_0} , g_{P_0} , and $P_{0,W}$ (with θ_n^0 , g_n^0 and empirical measure)
 - choose any P_n^0 such that $\theta_{P_n^0} = \theta_n^0$, $g_{P_n^0} = g_n^0$ and $P_{n,W}^0 = P_{n,W}$
 - set *k* ← 0
- 2. iterative updates: while criterion not met, repeat

2.1 define
$$\frac{dP_n^k(\varepsilon)}{dP_n^k} = 1 + \langle \nabla_{P_n^k} \Psi, \varepsilon \rangle$$

2.2 compute MLE of ε : $\varepsilon_n^k = \arg \max_{\varepsilon} P_n \log P_n^k(\varepsilon)$
2.3 set $P_n^{k+1} = P_n^k(\varepsilon_n^k)$ and $k \leftarrow k+1$

3. at final step $k = K_n$, define TMLE $\psi_n^{\star} = \Psi(P_n^{K_n})$

A. Chambaz (Modal'X)

Typical theoretical results

Consistency: under empirical processes typical conditions

• if either $\theta_{p_n^{K_n}}$ or $g_{p_n^{K_n}}$ converges to the truth then ψ_n^* consistently estimates $\Psi(P_0)$

Central limit theorem: (same as above)

- if either θ_{p_n^{K_n} or g_{p_n^{K_n} converges to the truth and if the product of errors is O_p(1/√n) then ψ_n^{*} satisifes a CLT</sub>}</sub>}
- if, in addition, the estimation of g_{P0} relies on valid parametric model then one can conservatively estimate the asymptotic variance of ψ^{*}_n

MovieLens

Acknowledgement: GroupLens Research (University of Minnesota), public data set online MovieLens: (from the website)

"MovieLens is a movie recommendation website. It uses your ratings to generate personalized recommendations for other movies you will like and dislike, based on"

Building a data set:

- W, user information (age, occupation, location)
- A, gender why not, this is a toy example
- ► Y
- restriction to the 10 most rated movies

 $Y \in \mathbb{R}^{45}$, $Y_{ii} = 1$ iff movies *i* and *j* equally rated by user

- \rightarrow I create a rate 0 ("unrated") so that the network is always well-defined
- sample size n = 904

MovieLens: whereabouts and gender of users

MovieLens: $E_{P_n}{Y}$

male and female

MovieLens: $E_{P_n}(Y|A=0)$

Toy example

MovieLens: $E_{P_n}(Y|A=1)$

Toy example

Method

- initialization based on stacked logistic regressions
- stopping criterion: two successive L^2 -norms of ε_n^k smaller than a threshold
- brief summary:
 - $\|\varepsilon_n^k\|_2^2$: 0.13591, 0.00205, 0.00231
 - ψ_n^k : 0.193, 0.193, 0.197, 0.196

Conclusion

Discussion

Computational/theoretical challenges...

- cope with
 - larger network, large-dimensional contexts
 - strong dependence structure in conditional law of network given action and context
- elaborate third-order expansions of ψ^{*}_n − Ψ(P₀) to derive CLTs that are valid under milder assumptions

(already done in simpler frameworks, see [van der Laan, 2014])

extend to time-evolving networks (still on fixed set of edges),

e.g. by relying on an auto-regressive working model

Real-life relevant problems, because

- that would help to come up with a nice simulation scheme
- that always gives insight
- that matters