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Correlation versus Causality

umbrellas and car accidents are correlated

But:
provoking car accidents does not make appear umbrellas

distributing umbrellas in the street does not provoke car accidents
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Causal Gaussian Bayesian Network

X k
j is the expression of gene j ∈ 1, . . . ,p in experiment

k ∈ 1, . . . ,N

X k
j = mj +

∑
i∈pa(j)

Wi,jX k
i + εj with εj ∼ N (0, σ2

j )

with Wi,j 6= 0 if and only if i ∈ pa(j) and nodes ordered such
that that i ∈ pa(j)⇒ i < j (i.e., W = (Wi,j) is upper triangular).
Model parameters are θ = (W,m,σ).

Direct causal effects are W
Total causal effects are L = (I−W)−1 = I+W+ . . .+Wp−1

Wi,j =
d
dx

E[Xj |X−j ,do(Xi = x)] Li,j =
d
dx

E[Xj |do(Xi = x)]
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Markov equivalence in DAGs

Markov equivalence: two different network structures can
yield the same joint distribution and observational data
alone generally cannot orient edges
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Estimating causal effects from observational data

Some causal information can be recovered from observational
data alone. . .

Intervention-calculus when the DAG is Absent (Maathuis et
al., 2009):

1 Estimate the equivalence class of the DAG via the
PC-algorithm (Kalisch and Bühlmann, 2007)

2 Use intervention calculus to estimate bounds for causal
effects across equivalence classes, and rank causal effects

⇒ Shown to be better able to predict strong causal effects using
observational data alone than Lasso and elastic-net

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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Estimating causal effects from intervention data

Idea: if gene X1 is regulated by gene X2, its expression level
after knock-out of X2 should differ considerably compared to its
wild type (steady-state) expression.

Pinna et al. (2010):
Data: one wild-type (X wt

j for gene j), and one knock-out
experiment for each gene (X i

j for gene j under knock-out of
gene i)
Four different deviation matrices calculated, feed-forward
edges down-ranked, and causal links ranked in order of
absolute value

⇒ winner of the DREAM4 100-gene challenge

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data



Causality in Gene Expression
Mixing observation/intervention experiments

Applications

Gene Regulatory Networks
Gaussian Bayesian Network
Causal Ordering

Outline

1 Causality in Gene Expression
Gene Regulatory Networks
Gaussian Bayesian Network
Causal Ordering

2 Mixing observation/intervention experiments
Maximizing the Likelihood
MCMC framework: Mallows
Pairwise preferences: Babington-Smith

3 Applications
Simulations
DREAM 4
Rosetta

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data



Causality in Gene Expression
Mixing observation/intervention experiments

Applications

Gene Regulatory Networks
Gaussian Bayesian Network
Causal Ordering

Posterior Causal Ordering

For any given ordering o = o1,o2, . . . ,op we assume the full model:
Wi,j 6= ∀i < j (not suitable for large p without some kind of
regularization).

Posterior Causal Ordering is defined as:

P(o|data) ∝ P(data|θ̂o)× P(o)

where θ̂o is the MLE of the full model with causal ordering o and P(o)
is a prior distribution.

Causal effect estimates:

Ŵ =
∑

o

P(o|data)× Ŵ o and L̂ =
∑

o

P(o|data)× L̂o

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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log-likelihood: observational data only

We can show that the GBN model is equivalent to X ∼ N (µ,Σ) with

µ = mL and Σ = LT diag(σ2)L =
∑
j∈I

σ2
j LT eT

j ejL

where ej is a p-dimensional null row-vector except for its j th term

The log-likelihood of the model can be written as:

`(m,σ,W) = Cst− N
∑

j

log(σj)−
1
2

∑
k

∑
j

1
σ2

j
(xk

j − xk WeT
j −mj)

2

= Cst− N
∑

j

log(σj)−
1
2

∑
k

∑
j

1
σ2

j
(yk

j − yk WeT
j )

2

with yk
i =

(
xk

i −
1
N

∑
k ′ xk ′

i

)
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log-likelihood: observational data only

Simple analytical analysis gives:

mj =
1
N

∑
k

(xk
j − xk WeT

j ) σ2
j =

1
N

∑
k

(yk
j − yk WeT

j )
2

and W solution of the following linear system, for all (i , j) s.t. i ∈ paj :∑
i′∈paj

Wi′,j

∑
k

yk
i yk

i′ =
∑

k

yk
i yk

j

In the full model, paj = {i , i < j} we get:

max `(m,σ,W) = Cst− N
2

log det

(∑
k

yk
i yk

j

)

⇒ obs. data are uninformative for the causal ordering
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log-likelihood: observational + intervention data (1)

Consider experiment k with intervention on Jk (Jk = ∅ means
no intervention), where Kj = {k , j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can now be written as:

`(m,σ,W) = Cst−
∑

j

Nj log(σj)−
1
2

∑
j

1
σ2

j

∑
k∈Kj

(xk
j −xkWeT

j −mj)
2

Then

mj =
1
Nj

∑
k∈Kj

(xk
j − xkWeT

j )
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log-likelihood: Observational + intervention data (2)

The log-likelihood of the model can then be rewritten as:

˜̀(σ,W) = Cst−
∑

j

Nj log(σj)−
1
2

∑
j

1
σ2

j

∑
k∈Kj

(yk ,j
j − yk ,jWeT

j )
2

where for (k , j) such that k ∈ Kj : yk ,j = xk − 1/Nj
∑

k ′∈Kj
xk ′

Then W solution of the following linear system:∑
i ′,(i ′,j)∈E

Wi ′,j
∑
k∈Kj

yk ,j
i yk ,j

i ′ =
∑
k∈Kj

yk ,j
i yk ,j

j for all (i , j) ∈ E

and
σ2

j =
1
Nj

∑
k∈Kj

(yk ,j
j − yk ,jWeT

j )
2
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Metropolis-Hasting

Objective: draw samples from P(o|data) (which is only known
up to a normalization factor).

Metropolis-Hasting algorithm:
1 start from arbitrary order o(0)

2 for i = 1, . . . ,N:
propose o′ according to proposal distribution Q(o′|o(i−1))
compute acceptance rate

min
(

1,
P(o′|data)×Q(o(i−1)|o′)

P(o(i−1)|data)×Q(o′|o(i−1))

)
if move accepted o(i) = o′ else o(i) = o(i−1)

3 o(0),o(1),o(N) is a (dependent) sample of the target
distribution.

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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Mallows’ Proposal

Mallows’ Ranking Distribution: with parameter φ ∈]0,1[ and
reference ordering r is defined by

P(o;φ, r) = φd(o,r)

where d(o, r) counts the number of pairwise disagreements.

Properties:

mode is in r

φ→ 0 corresponds to a dirac distribution

φ→ 1 corresponds to the uniform distribution

normalization factor is 1× (1 + φ)× . . .× (1 + φ+ . . .+ φp−1)

sampling in O(p) with the Repeated Insertion Method

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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Mallow’s distribution in action

φ = 0.1 φ = 0.3 φ = 0.6 φ = 0.9
1 2 4 3 5
1 2 3 4 5
1 3 2 4 5
2 1 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 3 2 5 4
1 2 3 4 5
1 2 4 3 5

1 2 3 4 5
2 1 3 4 5
3 1 2 4 5
1 2 3 4 5
1 2 3 5 4
2 1 4 3 5
1 2 4 3 5
1 2 3 4 5
1 2 3 4 5
1 3 4 5 2

1 3 4 5 2
1 3 4 5 2
1 5 3 2 4
1 2 3 4 5
4 5 3 1 2
1 3 2 4 5
3 1 5 2 4
1 2 3 5 4
1 2 4 3 5
1 3 4 5 2

3 4 2 5 1
1 4 5 3 2
3 2 4 5 1
1 2 3 4 5
2 1 5 3 4
2 4 5 1 3
3 4 2 5 1
4 2 1 3 5
3 4 2 1 5
1 5 3 4 2

Table : Example illustrating ten draws from the Mallows model with a
reference ordering of r = (1 2 3 4 5) for different temperatures
(φ = 0.1,0.3,0.6,0.9).

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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Babington-Smith ranking distribution

Pairwise preferences: for any pair of distinct genes (i , j) one
can easily compute:

πi,j = P(i < j |datai,j) ∝ P(datai,j |i < j)

πj,i = P(j < i |datai,j) ∝ P(datai,j |j < i)

with πi,j + πj,i = 1.

Idea: use pairwise preferences to obtain an approximated
support for P(o|data) using the Babington-Smith distribution.

P(o;π) ∝
∏
i<j

πoi ,oj

(ex: if o = (3 1 2), P(o;π) ∝ π3,1π3,2π1,2)

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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Babington-Smith Strategy

Problem: Repeated Insertion Method not applicable for
Babington-Smith distribution. MCMC sampling necessary !

Three steps strategy:
1) compute pairwise preferences π
⇒ O(p2) but fast since on restricted datasets

2) sample from Babington-Smith distribution P(o;π)
⇒ fast MCMC since likelihood depend only on π

3) compute posterior distribution on approximated support O
⇒ retain only the most likely orderings, support size arbitrary

Remarks:
the strategy is fast, only Step 3 is time consuming
what if Babington-Smith support differs from real support ?

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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N = 30: 10 with Jk = {1}, 10 with Jk = {3, 4}, 10 with Jk = {5, 7}

L∗ = (I −W∗)−1 =



1 −0.70 1.20 0.56 −0.78 0.36 −0.06 0.60
0 1 0 −0.80 1.12 0 0.50 −1.23
0 0 1 0 0 0.30 0.24 −0.22
0 0 0 1 −1.40 0 0 0.98
0 0 0 0 1 0 0 −0.70
0 0 0 0 0 1 0.80 −0.72
0 0 0 0 0 0 1 −0.90
0 0 0 0 0 0 0 1


.

m∗ = (0.5, 1.2, 0.7, 0.6, 1.4, 0.5, 0.8, 1.2)

σ∗ = η(0.3, 1.1, 0.6, 0.3, 1.0, 0.5, 0.8, 1.3) with η = 0.1 or η = 1.0

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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MCMC-Mallows: ϕ = 0.2, iter= 1000 + 5000, time' 100
Babington-Smith: iter= 1000 + 5000, max= 60, time' 1

Ŵ versus W ∗

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

reference

es
tim

at
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Mallows
Babington−Smith

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

reference
es

tim
at

ed

Mallows
Babington−Smith

MSE MCMC-Mallows Babington-Smith
η = 0.1 0.043 0.045
η = 1.0 0.194 0.174
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Top 10 causal orderings

MCMC-Mallows Babington-Smith sampling
Gene ordering log L DAG err. Gene ordering log L DAG err.

1, 2, 4, 5, 3, 6, 7, 8 -0.8832 0 1, 2, 4, 3, 6, 7, 5, 8 -0.8431 0
1, 3, 2, 4, 6, 7, 5, 8 -1.2104 0 1, 2, 3, 4, 6, 7, 5, 8 -0.8431 0
1, 3, 2, 4, 6, 5, 7, 8 -1.2104 0 1, 2, 4, 3, 6, 5, 7, 8 -0.8431 0
1, 2, 4, 3, 6, 7, 5, 8 -1.2378 0 1, 2, 3, 4, 6, 5, 7, 8 -0.8431 0
1, 2, 3, 4, 6, 7, 5, 8 -1.2378 0 1, 2, 3, 6, 4, 7, 5, 8 -0.9217 0
1, 2, 4, 3, 6, 5, 7, 8 -1.2378 0 1, 2, 3, 6, 4, 5, 7, 8 -0.9217 0
1, 2, 3, 4, 6, 5, 7, 8 -1.2378 0 1, 2, 3, 6, 7, 4, 5, 8 -1.1079 0
1, 3, 2, 6, 4, 7, 5, 8 -1.2890 0 1, 2, 4, 3, 5, 6, 7, 8 -1.3276 0
1, 3, 2, 6, 4, 5, 7, 8 -1.2890 0 1, 2, 3, 4, 5, 6, 7, 8 -1.3276 0
1, 3, 6, 2, 4, 7, 5, 8 -1.2890 0 1, 2, 3, 4, 7, 6, 5, 8 -2.5226 1

η = 0.1

DAG err. = number of ordering inconsistencies with the true DAG.

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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Top 10 causal orderings

MCMC-Mallows Babington-Smith sampling
Gene ordering log L DAG err. Gene ordering log L DAG err.

1, 2, 7, 8, 3, 5, 6, 4 -1.3537 3 1, 2, 7, 8, 4, 3, 5, 6 -0.9316 2
1, 2, 7, 3, 5, 6, 8, 4 -1.4674 2 1, 2, 7, 8, 3, 4, 5, 6 -0.9316 2
1, 2, 7, 3, 5, 8, 6, 4 -1.4674 2 1, 2, 7, 3, 8, 4, 5, 6 -1.0712 2
1, 2, 7, 3, 8, 5, 6, 4 -1.4933 3 1, 2, 7, 3, 4, 5, 8, 6 -1.4468 1
1, 7, 8, 3, 2, 5, 6, 4 -1.6368 4 1, 2, 7, 3, 4, 5, 8, 6 -1.4468 1
1, 5, 3, 2, 7, 6, 8, 4 -1.6849 2 1, 2, 7, 3, 4, 5, 6, 8 -1.4468 1
1, 5, 3, 2, 7, 8, 6, 4 -1.6849 2 1, 2, 7, 3, 4, 5, 6, 8 -1.4468 1
1, 7, 3, 2, 5, 6, 8, 4 -1.7490 3 1, 2, 7, 4, 3, 5, 8, 6 -1.4468 1
1, 7, 3, 2, 5, 8, 6, 4 -1.7490 3 1, 2, 7, 4, 3, 5, 8, 6 -1.4468 1
1, 7, 3, 2, 8, 5, 6, 4 -1.7749 4 1, 2, 7, 4, 3, 5, 6, 8 -1.4468 1

η = 1.0

DAG err. = number of ordering inconsistencies with the true DAG.

A. RAU, F. JAFFRÉZIC, G. NUEL, Causal effects from observational/interventional GE data
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10-genes network challenge

DREAM = Dialogue for Reverse Engineering Assessments and
Methods

Data: 5 datasets, each containing 1 wildtype and 10 KO (one for each
gene), true network (with feedback loops) known.

Dataset Pinna MCMC-Mallows Babington-Smith
1 0.83 (0.71,0.95) 0.53 (0.35,0.72) 0.60 (0.41,0.79)
2 0.52 (0.35,0.70) 0.52 (0.36,0.68) 0.55 (0.39,0.71)
3 0.82 (0.69,0.94) 0.69 (0.54,0.84) 0.72 (0.56,0.88)
4 0.90 (0.79,1.00) 0.87 (0.76,0.99) 0.90 (0.78,1.00)
5 0.70 (0.53,0.87) 0.81 (0.69,0.93) 0.76 (0.61,0.90)
All 0.73 (0.67,0.80) 0.80 (0.73,0.86) 0.75 (0.68,0.83)

AUC results (with 95% CI) using statistic |Ŵi,j |
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Rosetta compendium

300 experiments on yeast, database freely available:
http://arep.med.harvard.edu/ExpressDB/yeastindex.html

17-genes mating response network (Pe’er et al, 2001).

N = 300: 294 wildtypes, 1 KO on TOM6, 4 KD on FUS3, KSS1,
SST2, TEC1, 1 MKD on FUS3 and KSS1.
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Rosetta compendium

300 experiments on yeast, database freely available:
http://arep.med.harvard.edu/ExpressDB/yeastindex.html

8-genes subnetwork.

N = 300: 294 wildtypes, 1 KO on TOM6, 4 KD on FUS3, KSS1,
SST2, TEC1, 1 MKD on FUS3 and KSS1.
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Results on the 8-genes subnetwork
8! = 40,320 orderings, exhaustive search gives:
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Mallows: MSE = 5.7× 10−6

Babington-Smith: MSE = 8.6× 10−4
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Close-up on Babington-Smith
genes TEC1 MFA1 KSS1 STE6 YLR334C YLR343W SST2 NDJ1
TEC1 — 0.50 1.00 0.26 0.50 0.48 0.87 0.51
MFA1 0.50 — 0.66 0.50 0.50 0.50 0.41 0.50
KSS1 0.00 0.34 — 0.01 0.25 0.00 0.04 0.29
STE6 0.74 0.50 0.99 — 0.50 0.50 0.96 0.50

YLR334C 0.50 0.50 0.75 0.50 — 0.50 0.49 0.50
YLR343W 0.52 0.50 1.00 0.50 0.50 — 0.78 0.50

SST2 0.13 0.59 0.96 0.04 0.51 0.22 — 0.34
NDJ1 0.49 0.50 0.71 0.50 0.50 0.50 0.66 —

pairwise preferences

gene order ties ∆exact ∆BS

STE6/YLR334C/YLR343W TEC1 SST2 KSS1 MFA1/NDJ1 12 ref −0.920
STE6/YLR334C TEC1 SST2 YLR343W KSS1 MFA1/NDJ1 4 −0.003 −2.265
STE6/YLR334C TEC1 YLR343W SST2 KSS1 MFA1/NDJ1 4 −0.009 ref
STE6 TEC1 YLR334C SST2 YLR343W KSS1 MFA1/NDJ1 2 −0.056 −2.265
STE6 TEC1 YLR334C/YLR343W SST2 KSS1 MFA1/NDJ1 4 −0.062 −1.000

most likely causal orderings
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Results on the full mating response network
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Pe’er et al (2001) MCMC-Mallows

Mating response network inferred from Rosetta dataset. Only the 20
largest direct effects are represented. Grey nodes correspond to
genes which have been mutated in some of the samples
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Summary

Causal ordering:

DAG condition ⇐⇒ causal ordering

observation data only are uninformative for the causal ordering

we provide likelihood maximization formulas for any given ordering

Statistical inference

exhaustive search in O(p!) (p ' 10 max)

MCMC-Mallows works well

Babington-Smith fast but unreliable

Further work

extend Babington-Smith to triplet preferences ?

large p with regularization (ex: Ridge) and parallel tempering

using Fisher information to develop adaptive designs
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Summary

JFRB’2014: Journées Francophones sur les Réseaux Bayésiens
et les Modèles Graphiques Probabilistes

When: June 25-27, 2014

Where: IHP, Paris

Submission: two pages abstract (deadline: April 30, 2014)

Registration: free but mandatory (deadline: May 25, 2014)

https://sites.google.com/site/jfrb2014/
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