

SONATA: STRESS, ORPHAN, NETWORK AND TRANSCRIPTOME IN ARABIDOPSIS

Marie-Laure Martin-Magniette

URGV: Unit of Plant Genomic Research
UMR INRA-UEVE-CNRS

Team: Bioinformatics for predictive genomics

UMR AgroParisTech/INRA Applied Mathematics and Informatics
Team: Statistics and Genome

CURRENT CHALLENGE IN GENOMICS

- It is now relatively easy to sequence an organism and to localize its genes.
- Nearly 40% of the predicted genes have no assigned function (Hanson et al., 2010)
- New challenge is the functional annotation i.e identifying the function(s) of each gene
- Study of the sequence similarity is not enough since sequence similarity does not necessarily imply a similarity of protein structure or function

EVOLUTION OF THE DOGMA

post-translational mods prions folding + structure

 One gene-one enzyme hypothesis is now considered as an oversimplication

- Nowadays, we prefer to speak about functional complex involving many genes
- High-throughput technologies allow one to have access to the transcriptome (set of the transcribed genes in a given sample)
- Studying transcription in a various set of context allows to identify co-expressed genes, which are good candidates to be involved in a same biological process (Eisen et al, 1998)

CLASSICAL FLOWCHART

Drawbacks

- Data are generally extracted from international repositories
- It leads to heterogeneous data in terms of acquisition and preprocessing
- Co-expression generally done by analyzing gene pairs (Pearson correlation)
- Difficult to interpret since the number of gene pairs is large
- It is a local point of view of a complex question

ARABIDOPSIS THALIANA

- First plant sequenced in 2000
- About 25 000 genes
- Only 14% of the genes have a validated function
- 20 % of genes are orphean (no information on their function), generally discarded of the published works ...
- Large transcriptomic ressources are available

STRESS, ORPHAN, NETWORK AND TRANSCRIPTOME IN ARABIDOPSIS

Goal: Explore the orphan gene space to identify **new candidate genes** involved in defense and adaptation process.

Method: Predict co-expression networks using model-based clustering

Data: An original transcriptomic resource generated by the platform of URGV, stored in a dedicated database

- Homogeneous transcriptomic data
- ~ 6000 genes not present in Affymetrix chip
- High diversity of biological samples relative to stress.

Since 2003

- > 300 collaborations
- > 14 500 hybridizations 110 publications

Gagnot et al., 2008

CREATION OF THE DATASET

Extraction of the raw pvalues calculated for the differential analysis FWER controlled at 5% across comparisons and genes

60% of the genes (> 18000) have transcription 'impacted' (directly or not) by stress

Large overlap of impacted genes between biotic and abiotic stress

MODEL-BASED CLUSTERING

- Data are n genes described by Q variables : $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$ where $\mathbf{y}_i \in \mathbb{R}^Q$ are iid of unknown density h
- Data are assumed to come from several subpopulations modeled separately and the whole population is the mixture :

$$f_{\text{clust}}(.|K, m, \alpha) = \sum_{k=1}^{K} p_k \Phi(.|\mu_k, \Sigma_k)$$

with

- *K* the number of clusters (*i.e.* subpopulations)
- $\alpha = (\mathbf{p}, \mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K)$ where $\mathbf{p} = (p_1, \dots, p_K), \sum_{k=1}^K p_k = 1$
- $\Phi(.|\mu_k, \Sigma_k)$ the density function of $\mathcal{N}_Q(\mu_k, \Sigma_k)$
- The selected model $(\widehat{K}, \widehat{m})$ maximizes the BIC criterion.

APPLICATION ON THE WHOLE BIOTIC DATASET

BIC varies a lot and the curve is not convex

Large variability in the response according to the stress.

Whole dataset too heterogeneous to be analyzed without a priori knowledge

Presence number in the different stress

		Stress	Genes	Clusters
GENE CLUSTERING BY STRESS		Nitrogen (root)	14 139	60
CATOB		Nitrogen(rosette)	13 495	59
		Temperature	11 365	34
		Heavy metal	10 617	57
		Oxydative stress	10 127	52
	Matrix	Drought	8 143	34
{ DE gens x expression differences }		UV	7 894	37
_		Salt	5 729	30
Gaussian Mixture Model		Gamma	5 350	32
	Model selection with BIC + Classification rule for controlling the misclassification rate	Necrotrophic bacteria	11 220	50
		Biotrophic bacteria	12 023	56
		Virus (rosette)	11 832	54
		Fungi	9 773	51
~700 Clusters of Coexpressed Genes		Nematodes	7 413	27
		Oomycetes	5 508	31
		Rhodococcus	1 900	13
		Stifenia	1 525	17

COEXPRESSION CLUSTERS LINKED TO FUNCTIONAL INFORMATION

Gene Ontology

According to GO and literature

Transcription factors Stress related genes PPI intra-cluster

Other PPI

61% of the clusters are enriched in genes involved in stress responses 17% of the clusters are enriched in transcription factors

FIRST CONCLUSIONS

- Model-based clustering helped us to understand that the clustering should not be performed naively on the whole dataset
- An analysis per stress seems obvious but no biologists had told me that it was the correct way to analyze the data
- Coexpression depends on the stress conditions meaning that functional modules vary with the environment

20 coexpression analyses

Interpretation is not straightforward

COREGULATION NETWORKS

Calculation of occurrence number in a same cluster for each gene pair based on the 20 stress coexpression analyses

Resampling shows that a pair observed more than 4 times in a same cluster is biologically significant

First interpretation with gene pairs conserved in at least 7 stresses

FIRST RESULTS

- 1094 genes with 5222 interactions
- 221 Orphans identified in the gene pairs

- 34 connected components more homogeneous than coexpression cluster in term of biological information
 - Some genes inside a component are known to be functionally related
 - More validations are requested
- Most pairs are not specific to a biotic or abiotic stress.
 So there exists ubiquitous response to stress

FINAL CONCLUSIONS

- Model-based clustering allows to better understand the data than pair-based methods
- It provides a global point of view and a way to determine functional modules
- Working with homogeneous data is really the ideal framework
- Results per stress are stored in a database which will be public in July
- Such work provides a general view of the genome activity and should help the biologists to precise the biological questions.
- Investigation around the coregulation network is in progress

Acknowledgements

Bioinformatics for predictive genomics

- S. Aubourg
- V. Brunaud
- G. Rigaill
- R. Zaag
- J.-P. Tamby
- C.Guichard
- Z.Tariq

And thank you for your attention!

Funding:

